
MATH 108 Fall 2019 - Problem Set 10 solutions

due December 6

1. (a) Given that G = {e, u, v, w} is a group of order 4 with identity e, u2 = v and v2 = e,
construct the operation table for G.

· e u v w
e e u v w
u u v w e
v v w e u
w w e u v

(b) Given that H = {a, b, c, d} is a group of order 4 with identity a and b2 = c2 = d2 = a,
construct the operation table for H.

· a b c d
a a b c d
b b a d c
c c d a b
d d c b a

2. Find all subgroups of the symmetric group on three elements, S3.

We represent each permutation f : {1, 2, 3} → {1, 2, 3} by its sequence of values, (f(1), f(2), f(3)).

• {(1, 2, 3)},
• {(1, 2, 3), (2, 1, 3)},
• {(1, 2, 3), (1, 3, 2)},
• {(1, 2, 3), (3, 2, 1)},
• {(1, 2, 3), (2, 3, 1), (3, 1, 2)},
• {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)} = S3.

3. The dihedreal group of the square, D4, is the group of the symmetries of a square. Let
e ∈ D4 be the identity element. Let r ∈ D4 denote a 90◦ counter-clockwise rotation of
the square. Let s ∈ D4 denote a reflection of the square across a vertical line through
the center. List the eight elements of D4 in terms of r and s and find the order of each
element. (You can physically model D4 by rotating and flipping a square of paper.)

• e has order 1,

• r has order 4,

• r2 has order 2,

• r3 has order 4,

• s has order 2,



• rs has order 2,

• r2s has order 2,

• r3s has order 2.

4. Let G be a group (represented multiplicatively) and let f : G→ G be the function defined
by f(x) = x−1. Prove that f is a group homomorphism if and only if G is abelian.

Suppose G is abelian. Then for any x, y ∈ G,

f(xy) = (xy)−1 = y−1x−1.

Since G is abelian, y−1x−1 = x−1y−1 = f(x)f(y). Therefore f is a group homomorphism.

Suppose that f is a group homomorphism. For any x, y ∈ G,

xy = f(x−1)f(y−1) = f(x−1y−1) = (x−1y−1)−1 = (y−1)−1(x−1)−1 = yx.

Therefore G is abelian.

5. For each pair of groups, demonstrate an isomorphism between them or prove that they
are not isomorphic.

(a) (Z/4Z,+) and ({1,−1, i,−i}, ·).
Isomorphic. Define f : (Z/4Z,+)→ ({1,−1, i,−i}, ·) by

f(0) = 1,

f(1) = i,

f(2) = −1,

f(3) = −i.
(The other possible isomorphism sends 1 to −i.)

(b) S3 and (Z/6Z,+).

Not isomorphic. (Z/6Z,+) is abelian, but S3 is not.

(c) G and H defined in Problem 1.

Not isomorphic. u,w ∈ G both have order 4, but every element of H has order 1 or
2.

(d) (Z/5Z \ {0}, ·) and (Z/4Z,+).

Isomorphic. Define f : (Z/4Z,+)→ (Z/5Z \ {0}, ·) by

f(0) = 1,

f(1) = 2,

f(2) = 4,

f(3) = 3,

(The other possible isomorphism sends 1 to 3.)



6. Let G and H be groups with e the identity element of H. For group homomorphism
f : G→ H, the kernel of f , denoted ker(f), is defined as

ker(f) = {g ∈ G | f(g) = e}.

Prove that ker(f) is a subgroup of G.

We want to show that for any a, b ∈ ker(f), we have ab−1 ∈ ker(f). Since a, b ∈ ker(f),
we have f(a) = f(b) = e. Using the fact that f is a homomorphism,

f(ab−1) = f(a)f(b−1) = f(a)f(b)−1 = ee−1 = e.

Therefore ab−1 ∈ ker(f), so ker(f) is a subgroup of G.

7. Let G be a finite group (represented multiplicatively) and H a subgroup of G. Define a
relation ∼ on G by a ∼ b if and only if ab−1 ∈ H.

(a) Prove that ∼ is an equivalence relation.

For any a ∈ G, aa−1 = e. Since H is a subgroup, e ∈ H, so a ∼ a. Therefore ∼ is
reflexive.

Suppose a, b ∈ G with a ∼ b, so ab−1 ∈ H. Since H is a subgroup, the inverse
(ab−1)−1 = ba−1 is also in H. Therefore b ∼ a so ∼ is symmetric.

Suppose a, b, c ∈ G with a ∼ b and b ∼ c, so ab−1 ∈ H and bc−1 ∈ H. Since H
is a subgroup, it is closed under the group operation, so ac−1 = (ab−1)(bc−1) ∈ H.
Therefore a ∼ c, so ∼ is transitive.

(b) Prove that every equivalence class of ∼ has cardinality |H|.
For any a ∈ G, the equivalence class of a is

a = {b ∈ G | ab−1 ∈ H}.

Solving the condition ab−1 ∈ H for b gives b = ha for some h ∈ H.

a = {ha | h ∈ H}.

Let f : H → a be defined by f(h) = ha. The above description of a implies that
f is surjective. It is injective because the mulitplication on the right function ρa is
injective. Therefore |H| = |a|.

(c) Prove that |H| divides |G|.
The equivalence classes of ∼ form a partition of G, so |G| is equal to the sum of the
sizes of the equivalence classes. Suppose there are k equivalence classes. Each class
has size |H|, so |G| = k|H|. Therefore |H| divides |G|.


