due December 6

1. (a) Given that $G = \{e, u, v, w\}$ is a group of order 4 with identity $e, u^2 = v$ and $v^2 = e$, construct the operation table for G.

•	e	u	v	w
e	e	u	v	w
u	u	v	w	e
v	v	w	e	u
w	w	e	u	v

- (b) Given that $H = \{a, b, c, d\}$ is a group of order 4 with identity a and $b^2 = c^2 = d^2 = a$, construct the operation table for H.
- 2. Find all subgroups of the symmetric group on three elements, \mathfrak{S}_3 .

We represent each permutation $f : \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ by its sequence of values, (f(1), f(2), f(3)).

- $\{(1,2,3)\},$
- $\{(1,2,3),(2,1,3)\},\$
- $\{(1,2,3),(1,3,2)\},\$
- $\{(1,2,3),(3,2,1)\},\$
- $\{(1,2,3),(2,3,1),(3,1,2)\},\$
- {(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)} = \mathfrak{S}_3 .
- 3. The dihedreal group of the square, D_4 , is the group of the symmetries of a square. Let $e \in D_4$ be the identity element. Let $r \in D_4$ denote a 90° counter-clockwise rotation of the square. Let $s \in D_4$ denote a reflection of the square across a vertical line through the center. List the eight elements of D_4 in terms of r and s and find the order of each element. (You can physically model D_4 by rotating and flipping a square of paper.)
 - e has order 1,
 - r has order 4,
 - r^2 has order 2,
 - r^3 has order 4,
 - s has order 2,

- rs has order 2,
- r^2s has order 2,
- r^3s has order 2.
- 4. Let G be a group (represented multiplicatively) and let $f : G \to G$ be the function defined by $f(x) = x^{-1}$. Prove that f is a group homomorphism if and only if G is abelian. Suppose G is abelian. Then for any $x, y \in G$,

$$f(xy) = (xy)^{-1} = y^{-1}x^{-1}.$$

Since G is abelian, $y^{-1}x^{-1} = x^{-1}y^{-1} = f(x)f(y)$. Therefore f is a group homomorphism. Suppose that f is a group homomorphism. For any $x, y \in G$,

$$xy = f(x^{-1})f(y^{-1}) = f(x^{-1}y^{-1}) = (x^{-1}y^{-1})^{-1} = (y^{-1})^{-1}(x^{-1})^{-1} = yx.$$

Therefore G is abelian.

5. For each pair of groups, demonstrate an isomorphism between them or prove that they are not isomorphic.

(a)
$$(\mathbb{Z}/4\mathbb{Z}, +)$$
 and $(\{1, -1, i, -i\}, \cdot)$.
Isomorphic. Define $f : (\mathbb{Z}/4\mathbb{Z}, +) \to (\{1, -1, i, -i\}, \cdot)$ by
 $f(\overline{0}) = 1,$
 $f(\overline{1}) = i,$
 $f(\overline{2}) = -1,$
 $f(\overline{3}) = -i.$

(The other possible isomorphism sends $\overline{1}$ to -i.)

- (b) 𝔅₃ and (ℤ/6ℤ, +).
 Not isomorphic. (ℤ/6ℤ, +) is abelian, but 𝔅₃ is not.
- (c) G and H defined in Problem 1. Not isomorphic. $u, w \in G$ both have order 4, but every element of H has order 1 or 2.
- (d) $(\mathbb{Z}/5\mathbb{Z} \setminus \{\overline{0}\}, \cdot)$ and $(\mathbb{Z}/4\mathbb{Z}, +)$. Isomorphic. Define $f : (\mathbb{Z}/4\mathbb{Z}, +) \to (\mathbb{Z}/5\mathbb{Z} \setminus \{\overline{0}\}, \cdot)$ by

$$f(\overline{0}) = \overline{1},$$

$$f(\overline{1}) = \overline{2},$$

$$f(\overline{2}) = \overline{4},$$

$$f(\overline{3}) = \overline{3},$$

(The other possible isomorphism sends $\overline{1}$ to $\overline{3}$.)

6. Let G and H be groups with e the identity element of H. For group homomorphism $f: G \to H$, the kernel of f, denoted ker(f), is defined as

$$\ker(f) = \{g \in G \mid f(g) = e\}.$$

Prove that $\ker(f)$ is a subgroup of G.

We want to show that for any $a, b \in \ker(f)$, we have $ab^{-1} \in \ker(f)$. Since $a, b \in \ker(f)$, we have f(a) = f(b) = e. Using the fact that f is a homomorphism,

$$f(ab^{-1}) = f(a)f(b^{-1}) = f(a)f(b)^{-1} = ee^{-1} = ea^{-1}$$

Therefore $ab^{-1} \in \ker(f)$, so $\ker(f)$ is a subgroup of G.

- 7. Let G be a finite group (represented multiplicatively) and H a subgroup of G. Define a relation \sim on G by $a \sim b$ if and only if $ab^{-1} \in H$.
 - (a) Prove that \sim is an equivalence relation.

For any $a \in G$, $aa^{-1} = e$. Since H is a subgroup, $e \in H$, so $a \sim a$. Therefore \sim is reflexive.

Suppose $a, b \in G$ with $a \sim b$, so $ab^{-1} \in H$. Since H is a subgroup, the inverse $(ab^{-1})^{-1} = ba^{-1}$ is also in H. Therefore $b \sim a$ so \sim is symmetric.

Suppose $a, b, c \in G$ with $a \sim b$ and $b \sim c$, so $ab^{-1} \in H$ and $bc^{-1} \in H$. Since H is a subgroup, it is closed under the group operation, so $ac^{-1} = (ab^{-1})(bc^{-1}) \in H$. Therefore $a \sim c$, so \sim is transitive.

(b) Prove that every equivalence class of \sim has cardinality |H|.

For any $a \in G$, the equivalence class of a is

$$\overline{a} = \{ b \in G \mid ab^{-1} \in H \}.$$

Solving the condition $ab^{-1} \in H$ for b gives b = ha for some $h \in H$.

$$\overline{a} = \{ ha \mid h \in H \}.$$

Let $f: H \to \overline{a}$ be defined by f(h) = ha. The above description of \overline{a} implies that f is surjective. It is injective because the multiplication on the right function ρ_a is injective. Therefore $|H| = |\overline{a}|$.

(c) Prove that |H| divides |G|.

The equivalence classes of ~ form a partition of G, so |G| is equal to the sum of the sizes of the equivalence classes. Suppose there are k equivalence classes. Each class has size |H|, so |G| = k|H|. Therefore |H| divides |G|.