
MATH 108 Fall 2019 - Problem Set 1 solutions

due October 4

1. Write the truth table for each propositional form, and determine if it is a tautology, a
contradiction, or neither.

(a) P ⇔ P ∧ (P ∨Q).

P Q P ∨Q P ∧ (P ∨Q) P ⇔ P ∧ (P ∨Q)
T T T T T
T F T T T
F T T F T
F F F F T

Tautology.

(b) [Q ∧ (P ⇒ Q)]⇒ P.

P Q P ⇒ Q Q ∧ (P ⇒ Q) [Q ∧ (P ⇒ Q)]⇒ P
T T T T T
T F F F T
F T T T F
F F T F T

Neither.

(c) P ∧ (P ⇔ Q) ∧ ∼Q.

P Q P ⇔ Q ∼Q P ∧ (P ⇔ Q) ∧ ∼Q
T T T F F
T F F T F
F T F F F
F F T T F

Contradiction.

(d) (P ⇒ Q)⇔ (Q⇒ P ).

P Q P ⇒ Q Q⇒ P (P ⇒ Q)⇔ (Q⇒ P )
T T T T T
T F F T F
F T T F F
F F T T T

Neither.

2. Rewrite each proposition in English. You may use mathematical expressions (e.g. “x =
0”) in your answers but replace all the logical symbols. Take the universe to be all real
numbers.

(a) (∀x)(∀y)[(xy > 0) ∨ (xy < 0)].

For all real numbers x and y, xy > 0 or xy < 0.



(b) (∃x)(∀y)(x + y = 0).

There is a real number x such that for all real numbers y, x + y = 0.

(c) (∀y)(∃x)(x + y = 0).

For all real numbers y, there is a real number x such that x + y = 0.

(d) (∀x)[x > 0⇒ (∃y)(xy = 1)].

For all real numbers x, if x > 0 then there is a real number y for which xy = 1.

(e) (∀y)(∃!x)[(x ≤ y) ∧ (y ≤ x)].

For each real number y, there is a unique real number x with x ≤ y and y ≤ x.

(f) (∀y)(∃!x)(y = x2).

For all numbers y, there is a unique real number x such that y = x2.

3. Determine if each proposition in Problem 2 is true or false in the universe of all real
numbers. Give a short justification for each answer.

(a) False. If x = 0 then neither xy > 0 nor xy < 0 are true.

(b) False. For any choice of x, there is onle one value of y such that x + y = 0. For all
the other real numbers y, that equation is false.

(c) True. For all y, choosing x = −y satisfies x + y = 0.

(d) True. For any x > 0, choosing y = 1/x satisfies xy = 1.

(e) True. For any choice of y, there is exactly one value of x for which both x ≤ y and
y ≤ x, which is x = y.

(f) False. For y > 0, there are two values of x for which y = x2, not one. For y < 0,
there are zero values of x for which y = x2.

4. Let x be a real number. For each proposition, write the contrapositive. Then prove the
proposition by contraposition.

(a) If x2 + 2x < 0, then x < 0.

Contrapositive: If x ≥ 0, then x2 + 2x ≥ 0.

Assume that x ≥ 0. The we have that 2x ≥ 0. Additionally, x2 ≥ 0 for any real x.
Summing these two inequalities gives x2 + 2x ≥ 0.

(b) If x(x− 4) > −3, then x < 1 or x > 3.

Contrapositive: If x ≥ 1 and x ≤ 3, then x(x− 4) ≤ −3.

Assume that 1 ≤ x ≤ 3. Then x− 1 ≥ 0 and x− 3 ≤ 0. Since x− 1 is nonnegative,
we can multiply both sides of the other inequality by x− 1 to get

(x− 3)(x− 1) ≤ 0 · (x− 1) = 0.

Rearranging terms of this inequality gives x(x− 4) ≤ −3.

5. Let a and b be positive integers. Prove each proposition by contradiction.



(a) If a divides b, then a ≤ b.

Assume that a divides b and that a > b. By the definition of “divides”, we have
that b/a is an integer. Since a and b are positive, b/a must be positive, so b/a ≥ 1.
However, dividing both sides of the inequality a > b by a gives 1 > b/a. This is a
contradiction.

(b) Either a and b are odd, or ab is even.

Assume that a or b are even and that ab is odd. First consider the case that a is even,
so a = 2k for some integer k. Then ab = 2kb, which is even. This is a contradiction.
Otherwise b must be even, so b = 2` for some integer `. Then ab = a2`, which is
even. This is also a contradiction. (You could also use “without loss of generality”
to reduce cases here.)

(c) If a < b and ab < 4, then a = 1.

Assume that a < b and ab < 4 but a 6= 1. Since a is a positive integer, this implies
that a ≥ 2 and since b > a, we must have b ≥ 3. Multiplying these inequalities gives
ab ≥ 6, which is a contradiction.

6. For x a real number, bxc denotes the “floor” of x, which is the largest integer less than
or equal to x. Prove using cases that for all integers k, the value of bk2/2c is even.

Consider the cases that k is even or k is odd. First assume that k is even, so k = 2m for
some integer m. Then

bk2/2c = b(2m)2/2c = b2m2c = 2m2

which is even.

Then assume that k is odd, so k = 2m + 1 for some integer m. Then

bk2/2c = b(2m + 1)2/2c = b2m2 + 2m + 1/2c.

Since 2m2 + 2m is an integer and 1/2 < 1, the floor function rounds away the 1/2. The
value of the expression is 2m2 + 2m, which is even.

7. Let x, y and z be three real numbers in the interval [0, 1]. Prove that there exists a pair
of two of the three numbers that are at distance ≤ 1/2 apart. [Hint: You can assume
without loss of generality that x ≤ y ≤ z. Why is it sufficient to only consider this case?]

Without loss of generality we can assume that 0 ≤ x ≤ y ≤ z ≤ 1 by relabelling the
numbers so that they are in order. We proceed by contradiction. Assume that no pair
has distance ≤ 1/2. Then y − x > 1/2 and z − y > 1/2. Rewrite these as y > x + 1/2
and z > y + 1/2. Since x ≥ 0, the first inequality gives y > 1/2. Combining this with the
second inequality gives

z > 1/2 + 1/2 = 1.

But this contradicts the fact that z ≤ 1. Therefore there must be a pair with distance
≤ 1/2.


