due October 4

1. Write the truth table for each propositional form, and determine if it is a tautology, a contradiction, or neither.

(4) 1 ~	$\Rightarrow P$	$\land (P \lor Q)$).		
P	Q	$P \lor Q$	$P \land (P \lor Q)$	$P \Leftrightarrow P \land (P \lor$	Q)
Т	Т	Т	Т	Т	
Т	\mathbf{F}	Т	Т	Т	
\mathbf{F}	Т	Т	\mathbf{F}	Т	
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	Т	
Tautology.					
(b) $[Q /$	$\setminus (P$	$\Rightarrow Q)] \Rightarrow$	· <i>P</i> .		
P	Q	$P \Rightarrow Q$	$Q \land (P \Rightarrow Q)$	$Q) [Q \land (P \Rightarrow Q)]$	$)] \Rightarrow P$
Т	Т	Т	Т	Т	
Т	\mathbf{F}	\mathbf{F}	F	Т	
\mathbf{F}	Т	Т	Т	\mathbf{F}	
\mathbf{F}	\mathbf{F}	Т	F	Т	
Neither.					
(c) $P \wedge (P \Leftrightarrow Q) \wedge \sim Q$.					
P	O	$P \Leftrightarrow O$	$\sim Q P \wedge ($	$P \Leftrightarrow Q) \land \sim Q$	
1	Ŷ	$1 \leftrightarrow \mathcal{A}$		• /	
$\frac{1}{T}$	T	T	F	F	
T T T	T F	T T F	F T	F F	
T T F	T F T	T F F	F T F	F F F	
T T F F	T F T F	T F F T	F T F T	F F F F	
T T F F Con	T F T F itrad	$ \begin{array}{c} T \\ F \\ F \\ T \\ iction. \end{array} $	F T F T	F F F F	
$\begin{array}{c} \frac{1}{T} \\ T \\ F \\ F \\ Control \\ (d) (P = 1) \end{array}$	$\frac{\frac{Q}{T}}{F}$ F T F $dtrad$ $\Rightarrow Q$	$\begin{array}{c} 1 \iff Q\\ \hline T\\ F\\ F\\ T\\ \text{iction.}\\) \Leftrightarrow (Q =$	F T F T F T	F F F F	
$\begin{array}{c} \frac{1}{T} \\ T \\ F \\ F \\ Con \\ (d) (P = P) \end{array}$	$\frac{q}{T}$ F T F atrad $\Rightarrow Q$ Q	$ \begin{array}{c} 1 & \leftrightarrow & q \\ \hline T \\ F \\ F \\ T \\ \text{iction.} \\) \Leftrightarrow (Q = \\ P \Rightarrow Q \\ \end{array} $	$ \begin{array}{c} F \\ T \\ F \\ T \\ \end{array} $ $ \begin{array}{c} F \\ P \\ \end{array} \\ Q \Rightarrow P (H \\ \end{array} $	$\begin{array}{c} F \\ F \\ F \\ F \\ F \\ \end{array}$	P)
$\begin{array}{c} 1 \\ \hline T \\ T \\ F \\ F \\ Con \\ (d) (P = \frac{P}{T}) \end{array}$	$\frac{\frac{q}{T}}{T}$ F T F atrad $\Rightarrow Q$ Q T	$\begin{array}{c} 1 \iff Q \\ \hline T \\ F \\ F \\ T \\ \text{iction.} \\) \Leftrightarrow (Q = \\ \hline P \Rightarrow Q \\ \hline T \end{array}$	F T F T $P).$ $Q \Rightarrow P (H)$ T	F F F F F F T	<u>P)</u>
$\begin{array}{c} 1 \\ \hline T \\ T \\ F \\ F \\ Con \\ (d) (P = \frac{P}{T} \\ T \\ \end{array}$	$\frac{q}{T}$ F T F attrad $\Rightarrow Q$ C T F	$\begin{array}{c} 1 \iff q\\ \hline T\\ F\\ F\\ T\\ iction.\\) \Leftrightarrow (Q = \\ \hline P \Rightarrow Q\\ \hline T\\ F \end{array}$	$ \begin{array}{c} F \\ T \\ F \\ T \\ \end{array} $ $ \begin{array}{c} P \\ P \\ \end{array} \\ \hline \\ Q \Rightarrow P (P \\ T \\ \end{array} \\ \hline \\ T \\ \end{array} $	$ \begin{array}{c} F \\ F \\ F \\ F \\ F \\ \end{array} $ $ \begin{array}{c} P \Rightarrow Q \end{pmatrix} \Leftrightarrow (Q \Rightarrow \\ T \\ F \end{array} $	<u>P)</u>
$\begin{array}{c} I \\ T \\ T \\ F \\ F \\ Con \\ (d) (P = \frac{P}{T} \\ T \\ F \end{array}$	$\frac{\sqrt{q}}{T}$ F T F atrad $\Rightarrow Q$ Q T F T	$P \Rightarrow Q$ T F T iction. $Q = P$ F T	F T F T $P).$ $Q \Rightarrow P (H)$ T T F	F F F F F F F F F F	<u>P)</u>
$\begin{array}{c} \frac{1}{T} \\ T \\ F \\ F \\ Con \\ (d) (P = \frac{1}{T} \\ \frac{P}{T} \\ F \\ F \\ F \end{array}$	$\frac{\sqrt[3]{2}}{T}$ F T F attrad $\Rightarrow Q$ $\frac{Q}{T}$ F T F T F	$P \Rightarrow Q$ T T F T T $P \Rightarrow Q$ T T T	F T F T $P).$ $Q \Rightarrow P (H)$ T T F T	$P \Rightarrow Q) \Leftrightarrow (Q \Rightarrow$ T F F T	<u>P)</u>

- 2. Rewrite each proposition in English. You may use mathematical expressions (e.g. "x = 0") in your answers but replace all the logical symbols. Take the universe to be all real numbers.
 - (a) $(\forall x)(\forall y)[(xy > 0) \lor (xy < 0)].$ For all real numbers x and y, xy > 0 or xy < 0.

- (b) $(\exists x)(\forall y)(x+y=0)$. There is a real number x such that for all real numbers y, x+y=0.
- (c) $(\forall y)(\exists x)(x+y=0)$. For all real numbers y, there is a real number x such that x+y=0.
- (d) $(\forall x)[x > 0 \Rightarrow (\exists y)(xy = 1)].$ For all real numbers x, if x > 0 then there is a real number y for which xy = 1.
- (e) $(\forall y)(\exists !x)[(x \leq y) \land (y \leq x)].$ For each real number y, there is a unique real number x with $x \leq y$ and $y \leq x$.
- (f) $(\forall y)(\exists !x)(y = x^2)$. For all numbers y, there is a unique real number x such that $y = x^2$.
- 3. Determine if each proposition in Problem 2 is true or false in the universe of all real numbers. Give a short justification for each answer.
 - (a) False. If x = 0 then neither xy > 0 nor xy < 0 are true.
 - (b) False. For any choice of x, there is onle one value of y such that x + y = 0. For all the other real numbers y, that equation is false.
 - (c) True. For all y, choosing x = -y satisfies x + y = 0.
 - (d) True. For any x > 0, choosing y = 1/x satisfies xy = 1.
 - (e) True. For any choice of y, there is exactly one value of x for which both $x \leq y$ and $y \leq x$, which is x = y.
 - (f) False. For y > 0, there are two values of x for which $y = x^2$, not one. For y < 0, there are zero values of x for which $y = x^2$.
- 4. Let x be a real number. For each proposition, write the contrapositive. Then prove the proposition by contraposition.
 - (a) If $x^2 + 2x < 0$, then x < 0. Contrapositive: If $x \ge 0$, then $x^2 + 2x \ge 0$. Assume that $x \ge 0$. The we have that $2x \ge 0$. Additionally, $x^2 \ge 0$ for any real x. Summing these two inequalities gives $x^2 + 2x \ge 0$.
 - (b) If x(x 4) > -3, then x < 1 or x > 3. Contrapositive: If x ≥ 1 and x ≤ 3, then x(x - 4) ≤ -3. Assume that 1 ≤ x ≤ 3. Then x - 1 ≥ 0 and x - 3 ≤ 0. Since x - 1 is nonnegative, we can multiply both sides of the other inequality by x - 1 to get

$$(x-3)(x-1) \le 0 \cdot (x-1) = 0.$$

Rearranging terms of this inequality gives $x(x-4) \leq -3$.

5. Let a and b be positive integers. Prove each proposition by contradiction.

(a) If a divides b, then $a \leq b$.

Assume that a divides b and that a > b. By the definition of "divides", we have that b/a is an integer. Since a and b are positive, b/a must be positive, so $b/a \ge 1$. However, dividing both sides of the inequality a > b by a gives 1 > b/a. This is a contradiction.

(b) Either a and b are odd, or ab is even.

Assume that a or b are even and that ab is odd. First consider the case that a is even, so a = 2k for some integer k. Then ab = 2kb, which is even. This is a contradiction. Otherwise b must be even, so $b = 2\ell$ for some integer ℓ . Then $ab = a2\ell$, which is even. This is also a contradiction. (You could also use "without loss of generality" to reduce cases here.)

(c) If a < b and ab < 4, then a = 1.

Assume that a < b and ab < 4 but $a \neq 1$. Since a is a positive integer, this implies that $a \ge 2$ and since b > a, we must have $b \ge 3$. Multiplying these inequalities gives $ab \ge 6$, which is a contradiction.

6. For x a real number, $\lfloor x \rfloor$ denotes the "floor" of x, which is the largest integer less than or equal to x. Prove using cases that for all integers k, the value of $\lfloor k^2/2 \rfloor$ is even.

Consider the cases that k is even or k is odd. First assume that k is even, so k = 2m for some integer m. Then

$$\lfloor k^2/2 \rfloor = \lfloor (2m)^2/2 \rfloor = \lfloor 2m^2 \rfloor = 2m^2$$

which is even.

Then assume that k is odd, so k = 2m + 1 for some integer m. Then

$$\lfloor k^2/2 \rfloor = \lfloor (2m+1)^2/2 \rfloor = \lfloor 2m^2 + 2m + 1/2 \rfloor.$$

Since $2m^2 + 2m$ is an integer and 1/2 < 1, the floor function rounds away the 1/2. The value of the expression is $2m^2 + 2m$, which is even.

7. Let x, y and z be three real numbers in the interval [0, 1]. Prove that there exists a pair of two of the three numbers that are at distance $\leq 1/2$ apart. [Hint: You can assume without loss of generality that $x \leq y \leq z$. Why is it sufficient to only consider this case?]

Without loss of generality we can assume that $0 \le x \le y \le z \le 1$ by relabelling the numbers so that they are in order. We proceed by contradiction. Assume that no pair has distance $\le 1/2$. Then y - x > 1/2 and z - y > 1/2. Rewrite these as y > x + 1/2 and z > y + 1/2. Since $x \ge 0$, the first inequality gives y > 1/2. Combining this with the second inequality gives

$$z > 1/2 + 1/2 = 1.$$

But this contradicts the fact that $z \leq 1$. Therefore there must be a pair with distance $\leq 1/2$.