MATH 108 Fall 2019 - Problem Set 2 solutions

due October 11

- 1. Let x and y be real numbers.
 - (a) Prove for all x and y that if x + y is irrational then x is irrational or y is irrational. Proceed by contraposition, so assume that x and y are both rational, so x = a/b and y = c/d for some integers a, b, c, d. The sum of two rational numbers is rational:

$$x + y = \frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd}$$

since ad + cb and bd are integers.

- (b) Prove for all x that there exists y such that x + y is rational. Let x be a real number. Then let y = -x, so x + y = 0 which is rational.
- 2. For all integers x, prove that x is divisible by 6 if and only if x is divisible by 2 and by 3. Assume that x is divisible by 6 so x = 6k for some integr k. Then x = 2(3k) so x is divisible by 2, and x = 3(2k) so x is divisible by 3.

Assume that x is divisible by 2 and 3. Since x is divisible by 3, x = 3k for some integer k. Since x is even, either 3 is even or k is even. But 3 is not even, so k is even. Therefore $k = 2\ell$ for some integer ℓ . Then $x = 3k = 6\ell$, so it is divisible by 6.

- 3. (a) Prove that there exist integers m and n such that 3m + 4n = 1. Let m = -1 and n = 1. Then 3m + 4n = 3(-1) + 4(1) = 1.
 - (b) Prove that there does not exist integers m and n such that 3m + 6n = 1.
 Since 3m + 6n = 3(m + 2n) and m + 2n is an integer, 3m + 6n is divisible by 3 for all integers m and n. On the other hand 1 is not divisible by 3. Therefore 3m + 6n cannot be equal to 1.
- 4. Let $A = \{1, 2\}$ and $B = \{1, 4, 5\}$.
 - (a) Find $A \cup B$. $A \cup B = \{1, 2, 4, 5\}.$
 - (b) Find $A \cap B$. $A \cap B = \{1\}$.
 - (c) Find $A \setminus B$. $A \setminus B = \{2\}$.
 - (d) Find $A \times B$. $A \times B = \{(1,1), (1,4), (1,5), (2,1), (2,4), (2,5)\}.$

- (e) Find $\mathcal{P}(A)$. $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}.$
- 5. Let A, B, C, D be sets. Prove the following propositions.
 - (a) $(A \cup B) \cap C \subseteq A \cup (B \cap C)$. Suppose $x \in (A \cup B) \cap C$. Then $x \in A \cup B$ and $x \in C$, which means that either $x \in A$ and $x \in C$, or $x \in B$ and $x \in C$. In the former case, $x \in A$. In the latter case, $x \in B$ and $x \in C$ so $x \in B \cap C$. So in either case, $x \in A \cup (B \cap C)$.
 - (b) $(A \setminus B) \cap (A \setminus C) = A \setminus (B \cup C)$. Suppose $x \in (A \setminus B) \cap (A \setminus C)$, which means that $x \in A$ and $x \notin B$, and that $x \in A$ and $x \notin C$. Since $x \notin B$ and $x \notin C$, we have $x \notin B \cup C$. Therefore $x \in A \setminus (B \cup C)$. This proves $(A \setminus B) \cap (A \setminus C) \subseteq A \setminus (B \cup C)$. Suppose $x \in A \setminus (B \cup C)$, which means that $x \in A$ and $x \notin B \cup C$. Since $x \notin B \cup C$, we have $x \notin B$ and $x \notin C$. Therefore $x \in A \setminus B$ and also $x \in A \setminus C$. So $(A \setminus B) \cap (A \setminus C) \supseteq A \setminus (B \cup C)$.
 - (c) If A and B are disjoint, then $A \cap C$ and $B \cap C$ are disjoint. Suppose A and B are disjoint, so $A \cap B = \emptyset$. Then

$$(A \cap C) \cap (B \cap C) = A \cap B \cap C \subseteq A \cap B = \emptyset.$$

So then $(A \cap C) \cap (B \cap C) = \emptyset$, which means $A \cap C$ and $B \cap C$ are disjoint.

(d) If $C \subseteq A$ and $D \subseteq B$ then $D \setminus A \subseteq B \setminus C$.

Assume that $C \subseteq A$ and $D \subseteq B$. Suppose $x \in D \setminus A$, so $x \in D$ and $x \notin A$. We have from $D \subseteq B$ that if $x \in D$ then $x \in B$, so we can conclude that $x \in B$. We have from $C \subseteq A$ that if $x \in C$ then $x \in A$. The contrapositive of this statement combined with $x \notin A$ implies $x \notin C$. Therefore $x \in B \setminus C$.

6. Let A be the set of positive integers that are not perfect squares. Let P be the set of prime numbers. Prove that $P \subseteq A$.

We proceed by contradiction. Assume that $P \not\subseteq A$, so there exists some $p \in P$ such that $p \notin A$. Since $p \notin A$, it is a square, so $p = n^2$ for some integer n. Since p is a prime, p > 1, so n > 1 as well. However $p = n \cdot n$ with n > 1 implies that p is composite. This contradicts $p \in P$.

7. Let S be a set of 4 distinct integers. Prove that there exists a pair of distinct elements $x, y \in S$ such that x - y is divisible by 3.

When performing integer division by 3 on an integer, the remainder can be 0, 1 or 2. Since S has 4 elements, by pigeon-hole principle, there must be two elements $x, y \in S$ that have the same remainder, r. So x = 3n + r and y = 3m + r for some integers n, m. Then

$$x - y = (3n + r) - (3m + r) = 3(n - m).$$

which is divisible by 3.