
MATH 108 Fall 2019 - Problem Set 3 solutions

due October 18

1. For each postive integer k, let Ak = {x ∈ R | 0 < x < 1/k}. Prove that

∞⋂
k=1

Ak = ∅.

Let S =
⋂∞
k=1Ak. To prove that S is empty, it is sufficient to show that for all x ∈ R,

x /∈ S. If x ≤ 0 then x /∈ Ak for any value of k, so x /∈ S. Suppose that x > 0. Then
there exists a positive integer k such that k > 1/x. Then x > 1/k so x /∈ Ak. Therefore
x /∈ S.

2. Using induction, prove that for all positive integers n,

(a) n3 − n is divisible by 3.

The base case is n = 1. 13 − 1 = 0 which is divisible by 3.

Assume for some n ≥ 1 that n3 − n is divisible by 3. Then

(n+ 1)3 − (n+ 1) = n3 + 3n2 + 3n+ 1− n− 1

= (n3 − n) + 3n2 + 3n.

Since 3n2 and 3n are multiples of 3 and n3 − n is divisible by 3, the sum is also
divisible by 3.

(b) 8n − 1 is divisible by 7.

The base case is n = 1. 81 − 1 = 7 which is divisible by 7.

Assume for some n ≥ 1 that 8n − 1 is divisible by 7. Then

8n+1 − 1 = 8 · 8n − 1

= 8 · 8n − 8 + 7 = 8(8n − 1) + 7.

Since 8(8n − 1) is divisible by 8n − 1, it is divisible by 7. Clearly 7 is also divisible
by 7, so the sum is divisible by 7.

(c)
∑n

k=1 k
3 = n2(n+1)2

4
.

The base case is n = 1.
∑1

k=1 k
3 = 13 = 1. On the other side, 12(1+1)2

4
= 1, so the

equality holds.

Assume for some n ≥ 1 that
∑n

k=1 k
3 = n2(n+1)2

4
. Then

n+1∑
k=1

k3 =
n∑
k=1

k3 + (n+ 1)3.



By the induction hypothesis,

=
n2(n+ 1)2

4
+ (n+ 1)3 =

(n4 + 2n3 + n2) + (4n3 + 12n2 + 12n+ 4)

4

=
n4 + 6n3 + 13n2 + 12n+ 4

4
.

On the other side,

(n+ 1)2(n+ 2)2

4
=

(n2 + 2n+ 1)(n2 + 4n+ 4)

4

=
n4 + 6n3 + 13n2 + 12n+ 4

4

so the equality holds for n+ 1.

(d) n! = 1 +
∑n−1

k=1 k · k!.

The base case is n = 1. 1! = 1. On the other side, 1 +
∑0

k=1 k · k! = 1 + 0, so the
equality holds.

Assume for some n ≥ 1 that n! = 1 +
∑n−1

k=1 k · k!. Then

1 +
n∑
k=1

k · k! = 1 +
n−1∑
k=1

k · k! + n · n!

By the induction hypothesis,

= n! + n · n! = (n+ 1)n! = (n+ 1)!.

3. In American football, a team can score seven points for a touchdown, and three points
for a field goal (ignore safeties, two-point conversions, etc). Prove that every integer score
larger than 11 is possible.

The base cases are n = 12, 13, 14. 12 points can be obtained from 4 field goals. 13 points
can be obtained from a touchdown and two field goals. 14 points can be obtained from
two touchdowns.

For n ≥ 15 assume that n− 3 points is possible, so n− 3 = 3a+ 7b for some nonnegative
integers a and b. then

n = 3(a+ 1) + 7b

so n points can be obtained by a+ 1 field goals and b touchdowns.

4. Let P be the set of prime numbers. Prove that⋃
p∈P

pZ = Z \ {−1, 1}.

Assume that x ∈
⋃
p∈P pZ, so x ∈ pZ for some prime p. Since pZ ⊆ Z, x is an integer.

However 1 and −1 are not divisible by any prime p, since p ≥ 2, so x 6= 1 and x 6= −1.
Therefore x ∈ Z \ {−1, 1}. This proves

⋃
p∈P pZ ⊆ Z \ {−1, 1}.



Assume that x ∈ Z\{−1, 1}. We consider three cases. First assume x is positive, so x ≥ 2.
By the theorem showed in class, x is divisible by a prime number p, so x ∈ pZ ⊆

⋃
p∈P pZ.

Next assume x is negative, so x ≤ −2. Then −x is divisible by a prime p by the theorem.
So −x = kp for some integer k. Then x = (−k)p so x ∈ pZ ⊆

⋃
p∈P pZ. Finally

assume x = 0. Then for any prime p, x = 0 · p, so x ∈ pZ ⊆
⋃
p∈P pZ. This proves⋃

p∈P pZ ⊇ Z \ {−1, 1}.

5. Use the Well-Ordering Principle of the natural numbers to prove that every positive
rational number x can be expressed as a fraction x = a/b where a and b are postive
integers with no common factor.

Let
S = {a ∈ Z>0 | ∃b ∈ Z s.t. x = a/b}.

Since x is a rational number, it can be expressed as a fraction of integers x = c/d. Since
x is positive, either c is positive, so c ∈ S, or else c is negative and x = (−c)/(−d), so
−c ∈ S. Therefore S is not empty. By the Well-Ordering Principle, S has a smallest
element, a.

Suppose that x = a/b and that a and b have a common factor d > 1. Then a = dk and
b = d` for some integers k and `. Note then that 0 < k < a. We have x = (dk)/(d`) = k/`
with k > 0 so then k ∈ S. But this contradicts the fact that a was the smallest element
of S. Therefore it must be that a and b have no common factor. Finally, since x and a
are positive, b must also be positive.

6. The Fibonacci sequence is an infinite sequence of integers (f0, f1, f2, f3, . . .) defined as
follows. The first two numbers are f0 = 0 and f1 = 1. For all n ≥ 2, define fn to be the
sum of the previous two numbers,

fn = fn−1 + fn−2.

Use induction to prove that for all nonnegative integers n,

fn =
ϕn − ψn

ϕ− ψ
,

where ϕ = (1 +
√

5)/2 and ψ = (1−
√

5)/2.

The base cases are n = 0, 1. For n = 0,

ϕ0 − ψ0

ϕ− ψ
=

0

ϕ− ψ
= 0 = f0.

For n = 1,
ϕ1 − ψ1

ϕ− ψ
=
ϕ− ψ
ϕ− ψ

= 1 = f1.

Assume for some n ≥ 2 that fk = ϕk−ψk

ϕ−ψ for all 0 ≤ k < n. Then

fn = fn−1 + fn−2



and by the induction hypothesis

=
ϕn−1 − ψn−1

ϕ− ψ
+
ϕn−2 − ψn−2

ϕ− ψ
=

(ϕn−1 + ϕn−2)− (ψn−1 + ψn−2)

ϕ− ψ
.

We have

ϕn−1 + ϕn−2 = (ϕ+ 1)ϕn−2 =
3 +
√

5

2
ϕn−2

=

(
1 +
√

5

2

)2

ϕn−2 = ϕ2 · ϕn−2 = ϕn.

Similarly

ψn−1 + ψn−2 = (ψ + 1)ψn−2 =
3−
√

5

2
ψn−2

=

(
1−
√

5

2

)2

ϕn−2 = ψ2 · ψn−2 = ψn.

Therefore

fn =
ϕn − ψn

ϕ− ψ
.

7. Nim is a two-player game involving piles of coins. The players alternate taking turns, and
on each turn the player chooses a nonempty pile and chooses a positive number of coins
to remove from that pile. This continues until there are no coins left. In this version of
Nim, whoever takes the last coin loses, and the game starts with two piles, each with n
coins. Prove by induction that for all n ≥ 2, the second player has a winning strategy,
i.e. they can always win no matter what the first player does.

We proceed by strong induction. Assume for some n ≥ 2 that player 2 has a winning
strategy when the two piles start with k coins for all 2 ≤ k < n.

Let the starting number of coins in each pile be n. Player 1 must remove m coins for
some 0 < m ≤ n from one of the piles. Call the pile that player 1 chooses pile 1, and the
other pile 2. If m = n, then pile 1 is empty. Player 2 should remove n− 1 coins from pile
2, leaving only one coin. Now player 1 must remove the last coin, and loses. If m = n−1,
then player 2 should remove all n coins from pile 2, leaving only one coin. Then player 1
loses. If m < n−1, then player 2 should remove m coins from pile 2. Now both piles have
n−m coins with n−m ≥ 2 and it is player 1’s turn again. By the induction hypothesis,
player 2 has a winning strategy from this position. Therefore player 2 can always win, no
matter what player 1 does.


