
MATH 108 Fall 2019 - Problem Set 4 solutions

due October 25

1. Let n = a1a2 · · · ak with k ≥ 1 and a1, a2, . . . , ak positive integers and let p be a prime.
Use Euclid’s Lemma and induction on k to prove that if p divides n, then p divides ai for
some 1 ≤ i ≤ k.

Base case: Let k = 1 in which case n = a1. If p divides n, then p divides a1 since they
are equal.

Assume for some k ≥ 1 that if p divides a1a2 · · · ak then p divides ai for some 1 ≤ i ≤ k.
Now let n = a1a2 · · · akak+1. So n can be factored in to a1a2 · · · ak times ak+1. Suppose
that p divides n. By Euclid’s Lemma, either p divides a1a2 · · · ak or p divides ak+1. By
the induction hypothesis, if p divides a1a2 · · · ak then p divides ai for some 1 ≤ i ≤ k.
Therefore we can conclude that p divides ai for some 1 ≤ i ≤ k + 1.

2. A positive integer n is called square-free if it is not divisible by any perfect square except
for 1. Prove that n is square-free if and only if n is a product of distinct primes.

Suppose n is not square-free, so k2 divides n for some k ≥ 2. There is a prime p that
divides k, so p2 divides n. Therefore the prime factorization of n includes p at least twice.
Since the prime factorization is unique, n cannot be the product of distinct primes.

Suppose that n is not a product of distinct primes, so there is some p that appears at
least twice in the prime factorization of n. Then n is divisible by p2, which is a perfect
square that is not equal to 1, so n is not square-free.

3. For positive integers x and y, the greatest common divisor of x and y is the largest postive
integer that divides both x and y, denoted gcd(x, y). Let a, b, c be postive integers.

(a) Prove that a/ gcd(a, b) and b/ gcd(a, b) are integers that have no common factor.

Let gcd(a, b) = d. Since d is a divisor of a, a/d is an integer, and similarly for
b/d. We proceed by contradiction. Suppose that a/d and b/d have a common factor
c > 1. Then cd divides a and also divides b. Since cd > d, this violates the fact that
d is the largest integer that divides both a and b, which is a contradiction.

(b) For p a prime, prove that p divides a and p divides b if and only if p divides gcd(a, b).

Let gcd(a, b) = d. Suppose that p divides d. Since d divides a and b, and divisibility
is transitive, p also divides a and b.

Suppose that p divides a and b. We have a = dk and b = dl for some positive integers
k and l, and k and l have no common factor by part (a). By Euclid’s Lemma, p
divides either d or k. Similarly p divides d or l. Since k and l have no common
factor, it cannot be that p divides both k and l. Either p does not divide k or p does
not divide l, and in either case we can conclude that p divides d.



4. For positive integers a and b with gcd(a, b) = d, prove that

{as + bt | s, t ∈ Z} = dZ.

From Problem 3, we have that a/d and b/d are integers with no common factor. By
Bezout’s Identity, there exist integers s, t such that (a/d)s+(b/d)t = 1. Multiplying both
sides by d gives as + bt = d.

Let S = {as + bt | s, t ∈ Z}. For any x ∈ dZ, x = dk for some intger k. Then

x = kd = aks + bkt

so x ∈ S. This proves that S ⊇ dZ.

Let x ∈ S, so x = as + bt for some integers s and t. Since d divides as and d divides bt,
d must also divide x. Therefore x ∈ dZ. This proves that S ⊆ dZ.

5. For each relation, list which of the following properties it has: symmetric, antisymmetric,
transitive, reflexive, irreflexive.

(a) ≤ on Z.

Antisymmetric, transitive, reflexive.

(b) 6= on Z.

Symmetric, irreflexive.

(c) ⊆ on P(Z).

Antisymmetric, transitive, reflexive.

(d) “is the child of” on people.

Antisymmetric, irreflexive.

(e) {(1, 5), (5, 1), (1, 1)} on A = {1, 2, 3, 4, 5}.
Symmetric.

(f) {(x, y) ∈ Z× Z | x + y = 10} on Z.

Symmetric.

6. Let A = {1, 2, 3, 4, 5} and let ∼ be the relation on P(A) defined by S ∼ T if |S| = |T |.

(a) Prove that ∼ is an equivalence relation.

To prove ∼ is an equivalence relation we need to show it is reflexive, symmetric and
transitive. For reflexivity, for any set S we have |S| = |S| so S ∼ S. For symmetry,
for sets S and T if S ∼ T then |S| = |T | and |T | = |S| so T ∼ S. For transitivity,
suppose that S ∼ T and T ∼ R. Then |S| = |T | = |R|, so S ∼ R.

(b) How many equivalence classes does ∼ have and how many elements are in each class?

The relation has 6 equivialence classes, which consist of the sets of size 0, 1, 2, 3, 4,
5. These classes have 1, 5, 10, 10, 5, 1 elements respectively.



7. Let ∼ be a relation on set A with the property that for all a ∈ A, there exists b ∈ A such
that a ∼ b. Prove that if ∼ is transitive and symmetric, then ∼ is reflexive.

Suppose that ∼ is transitive and symmetric. For any a ∈ A, there exists b ∈ A such that
a ∼ b. By symmetry, b ∼ a. By transitivity, since a ∼ b and b ∼ a, we have a ∼ a.
Therefore ∼ is reflexive.


