MATH 108 Fall 2019 - Problem Set 6 solutions

due November 8

- 1. For each pair of sets A and B, and subset $\Gamma \subseteq A \times B$ determine if Γ is the graph of a function from A to B. Justify your answer.
 - (a) $A = B = \mathbb{R}$ and $\Gamma = \{(x, y) \in \mathbb{R}^2 \mid x = y^2\}$. No. Both (1, 1) and (1, -1) are in Γ .
 - (b) $A = B = \mathbb{R}$ and $\Gamma = \{(x, y) \in \mathbb{R}^2 \mid y = x^2\}$. Yes. For each $x \in \mathbb{R}$, there is exactly one pair, (x, x^2) , with first coordinate x.
 - (c) $A = B = \mathbb{R}$ and $\Gamma = \{(x, y) \in \mathbb{R}^2 \mid y = \sqrt{x}\}.$ No. There is no y such that $(-1, y) \in \Gamma$.
 - (d) $A = B = \mathbb{Z}$ and $\Gamma = \{(n, 0) \mid n \in \mathbb{Z}\}$. Yes. For each $n \in \mathbb{Z}$, there is exactly one pair, (n, 0), with first coordinate n.
 - (e) $A = \mathbb{Z}, B = \{0\}$ and $\Gamma = \{(n, 0) \mid n \in \mathbb{Z}\}$. Yes. For each $n \in \mathbb{Z}$, there is exactly one pair, (n, 0), with first coordinate n.
 - (f) $A = B = \mathbb{Z}/5\mathbb{Z}$ and $\Gamma = \{(a, b) \mid a = \overline{2}b\}$. Yes. $\Gamma = \{(\overline{0}, \overline{0}), (\overline{2}, \overline{1}), (\overline{4}, \overline{2}), (\overline{1}, \overline{3}), (\overline{3}, \overline{4})\}$. There is exactly one pair with first coordinate equal to each element of $\mathbb{Z}/5\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.
- 2. For each function f, determine if it is injective. If yes, find a *left-inverse* of f, which is a function g such that $g \circ f$ is the identity.
 - (a) $f : \mathbb{R} \to \mathbb{R}^2$ defined by f(x) = (x, x). Injective. Let $g : \mathbb{R}^2 \to \mathbb{R}$ be the function defined by g(x, y) = x.
 - (b) $f : \mathbb{R}^2 \to \mathbb{R}$ defined by f(x, y) = x + y. Not injective. For example f(0, 1) = f(1, 0) = 1.
 - (c) f: Z → Z defined by f(x) = 2x.
 Injective. Let g: Z → Z be the function defined by g(x) = x/2 if x is even, and g(x) = 0 if x is odd.
 - (d) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = e^x$. Injective. Let $g : \mathbb{R} \to \mathbb{R}$ be the function defined by $g(x) = \ln(x)$ if x > 0, and g(x) = 0 if $x \le 0$.
 - (e) $f : \mathbb{Z} \to \{0\}$ defined by f(x) = 0. Not injective. For example f(0) = f(1) = 0.
- 3. Let $f : A \to B$ and $g : B \to C$.

- (a) Prove that if $g \circ f$ is injective then f is injective. Assume that $g \circ f$ is injective and that f(x) = f(y) for some $x, y \in A$. Applying g to both sides of the equation gives g(f(x)) = g(f(y)). Since $g \circ f$ is injective, we have x = y. Therefore f is injective.
- (b) Give an example of f and g where $g \circ f$ is injective but g is not injective. Let $A = C = \{1\}$ and $B = \{1, 2\}$. Define $f : A \to B$ by f(1) = 1 and $g : B \to C$ by g(1) = g(2) = 1. Then $g \circ f$ is the identity function on $\{1\}$, which is injective, but g is not injective.
- 4. Let S be a set with partial order \sqsubseteq and T be a set with partial order \preceq . A function $f: S \to T$ is called *order-embedding* if it satisfies the property that $x \sqsubseteq y$ if and only if $f(x) \preceq f(y)$. Prove that if f is order-embedding then f injective.

Assume that f is order-embedding and that f(x) = f(y) for some $x, y \in S$. Since the relation \leq on T is reflexive, we have $f(x) \leq f(y)$ and $f(y) \leq f(x)$. By the orderembedding property, this implies that $x \sqsubseteq y$ and $y \sqsubseteq x$. Then since the relation \sqsubseteq on S is antisymmetric, it must be that x = y. Therefore f is injective.

5. Let a and m be integers with 0 < a < m. Let $f : \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ be the function defined by $f(\overline{x}) = \overline{a} \cdot \overline{x}$. Prove that f is injective if and only if gcd(a, m) = 1.

For the forward direction, we proceed by contraposition. Assume that gcd(a, m) = d > 1. We can write m = dx where x is a positive integer with x < m, so $\overline{x} \neq \overline{0}$. Since a is divisible by d, we have ax divisible by dx = m, so

$$f(\overline{x}) = \overline{ax} = \overline{0} = f(\overline{0})$$

so f is not injective.

For the backward direction, assume that gcd(a, m) = 1. Suppose that $f(\overline{x}) = f(\overline{y})$ for some integers x, y. Therefore

$$ax \equiv ay \pmod{m}$$
.

We want to show that a can be canceled from both sides, to get $x \equiv y \pmod{m}$. Unfortunately we can't use the Cancellation Law or Euclid's Lemma since m is not necessarily prime.

By Bezout's Identity, there exist $s, t \in \mathbb{Z}$ such that as + tm = 1, so $as \equiv 1 \pmod{m}$. In other words, \overline{s} is the multiplicative inverse of \overline{a} in $\mathbb{Z}/m\mathbb{Z}$. So we have

$$sax \equiv say \pmod{m},$$

$$1 \cdot x \equiv 1 \cdot y \pmod{m}$$
.

Therefore $\overline{x} = \overline{y}$, so f is injective.