MATH 108 Fall 2019 - Problem Set 7

due November 15

- 1. For each function f, determine if it is surjective. If yes, find a *right-inverse* of f, which is a function g such that $f \circ g$ is the identity.
 - (a) $f : \mathbb{R} \to \mathbb{R}^2$ defined by f(x) = (x, x).
 - (b) $f : \mathbb{R}^2 \to \mathbb{R}$ defined by f(x, y) = x + y.
 - (c) $f : \mathbb{Z} \to \mathbb{Z}/4\mathbb{Z}$ defined by $f(x) = \overline{x}$.
 - (d) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = e^x$.
 - (e) $f : \mathbb{Z} \to \{0\}$ defined by f(x) = 0.
- 2. Let $f: A \to B$ and $g: B \to C$.
 - (a) Prove that if $g \circ f$ is surjective then g is surjective.
 - (b) Give an example of f and g where $g \circ f$ is surjective but f is not surjective.
- 3. Prove that each function is a bijection. Give the inverse.
 - (a) $f : \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = x + 1.
 - (b) $f: (2,\infty) \to (-\infty, -1)$ defined by $f(x) = \frac{-x}{x-2}$.
 - (c) $f: \mathbb{Z}/8\mathbb{Z} \to \mathbb{Z}/8\mathbb{Z}$ defined by $f(\overline{x}) = \overline{5x-1}$.
- 4. For each pair of sets, find a bijection from the first to the second.
 - (a) $\mathbb{Z}_{>0}$ and $\mathbb{Z}_{\geq 0}$.
 - (b) \mathbb{R}^2 and \mathbb{C} .
 - (c) \mathbb{Z} and $\mathbb{Z}_{>0}$.
 - (d) $\{x \in \mathbb{R} \mid -1 < x < 1\}$ and \mathbb{R} .
- 5. For postive integers n and m, let $[n] = \{1, 2, ..., n\}$ and $[m] = \{1, 2, ..., m\}$.
 - (a) Let A be the set of all functions from [n] to [m]. Compute |A| in terms of n and m.
 - (b) Let B be the set of all bijective functions from [n] to [m]. Compute |B| in terms of n and m.
 - (c) Let C be the set of all injective functions from [n] to [m]. Compute |C| in terms of n and m.

6. Let $f_1, f_2 : A \to B$ and $g : B \to C$ and $h_1, h_2 : C \to D$.

- (a) Prove that if $g \circ f_1 = g \circ f_2$ and g is injective, then $f_1 = f_2$.
- (b) Prove that if $h_1 \circ g = h_2 \circ g$ and g is surjective, then $h_1 = h_2$.