
MATH 108 Fall 2019 - Problem Set 7

due November 15

1. For each function f , determine if it is surjective. If yes, find a right-inverse of f , which is
a function g such that f ◦ g is the identity.

(a) f : R→ R2 defined by f(x) = (x, x).

Not surjective. For example (1, 0) is not in the image of f .

(b) f : R2 → R defined by f(x, y) = x + y.

Surjective. Let g : R→ R2 be the function defined by g(x) = (x, 0).

(c) f : Z→ Z/4Z defined by f(x) = x.

Surjective. Let g : Z/4Z → Z be the function defined by g(0) = 0, g(1) = 1,
g(2) = 2, g(3) = 3.

(d) f : R→ R defined by f(x) = ex.

Not surjective. For example −1 is not in the image of f .

(e) f : Z→ {0} defined by f(x) = 0.

Surjective. Let g : {0} → Z be the function defined by g(0) = 0.

2. Let f : A→ B and g : B → C.

(a) Prove that if g ◦ f is surjective then g is surjective.

Since g ◦ f is surjective, for any z ∈ C, there exists x ∈ A such that g ◦ f(x) = z.
Let y = f(x). Then g(y) = z, so g is surjective.

(b) Give an example of f and g where g ◦ f is surjective but f is not surjective.

Let A = C = {1} and B = {1, 2}. Define f : A→ B by f(1) = 1 and g : B → C by
g(1) = g(2) = 1. Then g ◦ f is the identity function on {1}, which is surjective, but
f is not surjective.

3. Prove that each function is a bijection. Give the inverse.

(a) f : Z→ Z defined by f(x) = x + 1.

For each y ∈ Z, x = y − 1 is the unique integer such that f(x) = y. Therefore f is
bijective, and the inverse f−1 : Z→ Z is defined by f−1(y) = y − 1.

(b) f : (2,∞)→ (−∞,−1) defined by f(x) =
−x
x− 2

.

For y ∈ (−∞,−1), solving f(x) = y for x shows that x = 2y/(y + 1) is the unique
real number that could map to y. Therefore there is at most one x ∈ (2,∞) with
f(x) = y, proving f is injective.

To see that f is surjective, we need to check that for each y ∈ (−∞,−1), the value
x = 2y/(y + 1) that would map to y is in the domain, (2,∞). Since y < −1, the



denominator y + 1 is negative. Dividing both sides of the inequality y < y + 1 by
y + 1 gives

y

y + 1
> 1.

Therefore x = 2y/(y + 1) > 2, which proves that there is x ∈ (2,∞) with f(x) = y.

The inverse is f−1 : (−∞,−1)→ (2,∞) is defined by f−1(y) = 2y/(y + 1).

(c) f : Z/8Z→ Z/8Z defined by f(x) = 5x− 1.

f(0) = 7,

f(1) = 4,

f(2) = 1,

f(3) = 6,

f(4) = 3,

f(5) = 0,

f(6) = 5,

f(7) = 2.

For each y ∈ Z/8Z, there is exactly one x ∈ Z/8Z with f(x) = y.

The inverse f−1 : Z/8Z→ Z/8Z is defined by f−1(y) = 5(y + 1).

4. For each pair of sets, find a bijection from the first to the second.

(a) Z>0 and Z≥0.

Define f : Z>0 → Z≥0 by f(x) = x− 1.

(b) R2 and C.

Define f : R2 → C by f(x, y) = x + iy.

(c) Z and Z>0.

Define f : Z→ Z>0 by

f(x) =

{
2x + 1 if x ≥ 0

−2x if x < 0
.

(d) {x ∈ R | −1 < x < 1} and R.

Define f : (−1, 1)→ R by f(x) = 1
x+1

+ 1
x−1

.

5. For postive integers n and m, let [n] = {1, 2, . . . , n} and [m] = {1, 2, . . . ,m}.

(a) Let A be the set of all functions from [n] to [m]. Compute |A| in terms of n and m.

For f : [n]→ [m], we can choose the values f(k) one at a time for each k from 1 up
to n. For each k there are m choices for f(k), so the total number of functions is
mn.



(b) Let B be the set of all bijective functions from [n] to [m]. Compute |B| in terms of
n and m.

If n 6= m then any function f : [n]→ [m] can’t be bijective, so there are 0 bijective
functions.

If n = m, we again choose the values of f(k) one at a time for each k from 1 up to
n. When k = 1, there are n possible values for f(1) to choose from. Once f(1) is
chosen, there are only n − 1 choices for f(2) because f(2) can’t be equal to f(1) if
f is injective. Once f(1) and f(2) are chosen, there are n − 2 choices left for f(3).
This repeats for each k up to k = n where we have only one choice left for f(n).
Therefore the number of possible bijective functions is

n · (n− 1) · (n− 2) · · · 1 = n!.

(c) Let C be the set of all injective functions from [n] to [m]. Compute |C| in terms of
n and m.

If n > m then any function f : [n]→ [m] can’t be injective, so there are 0 injective
functions.

If n ≤ m, the analysis is similar to part (b). We can choose the values of f(k) one at
a time. The number of choices for f(1) is m, for f(2) is m− 1 and so on. The last
decision is f(n) which has m − n + 1 choices left. Therfore the number of possible
injective functions is

m · (m− 1) · (m− 2) · · · (m− n + 1) =
m!

(m− n)!
.

6. Let f1, f2 : A→ B and g : B → C and h1, h2 : C → D.

(a) Prove that if g ◦ f1 = g ◦ f2 and g is injective, then f1 = f2.

Assume g ◦ f1 = g ◦ f2 and g is injective. Since g is injective, it has a left-inverse
k : C → B. Then k ◦ g ◦ f1 = k ◦ g ◦ f2. The left-hand side of the equation is equal
to IB ◦ f1 = f1 and the right-hand side is equal to IB ◦ f2 = f2.

Alternate proof: Assume g ◦ f1 = g ◦ f2 and g is injective. For any x ∈ A, we have
g(f1(x)) = g(f2(x)). Since g is injective, this implies f1(x) = f2(x). Therefore f1
and f2 have the same domain, codomain and values so they are equal.

(b) Prove that if h1 ◦ g = h2 ◦ g and g is surjective, then h1 = h2.

Assume h1 ◦ g = h2 ◦ g and g is surjective. Since g is surjective, it has a right-inverse
k : C → B. Then h1 ◦ g ◦ k = h2 ◦ g ◦ k. The left-hand side of the equation is equal
to h1 ◦ IC = h1 and the right-hand side is equal to h2 ◦ IC = h2.

Alternate proof: Assume h1 ◦ g = h2 ◦ g and g is surjective. For any y ∈ C, there
exists x ∈ B such that g(x) = y. Since h1(g(x)) = h2(g(x)), we have h1(y) = h2(y).
Therefore h1 and h2 have the same domain, codomain and values so they are equal.


