MATH 108 Fall 2019 - Problem Set 8 solutions

due November 22

1. Let XY, Z, W be sets with | X| = |Z]| and |Y| = |W].

(a)

Cardinal addition is defined by |X|+ |Y| = |X U Y| where X and Y are disjoint.
Prove that cardinal addition is well-defined, meaning that

(X|+ Y] = 2]+ W]

where X and Y are disjoint and Z and W are disjoint.

Since | X| = |Z] and |Y| = |W/|, there are bijections f : X — Z and g : Y — W.
We define h: X UY — ZUW by letting h(z) = f(z) if x € X and h(y) = g(y) if
y € Y. For each z € Z, then there is a unique = € X such that h(x) = z and there
isnoy € Y with h(y) = z since h(y) € W for all y € Y and Z and W are disjoint.
Similarly if w € W then there is a unique y € Y such that h(y) = w and no z € X.
This proves that h is a bijection. So

IXUY|=|ZUW|.

Cardinal multiplication is defined by |X| - |Y| = |X x Y|. Prove that cardinal
multiplication is well-defined, meaning that

[ X|- Y] =2]-[W].

With f, g as in part (a), define h: X XY — Z x W by h(z,y) = (f(x),g(y)). For
each (z,w) € Z x W, there is a unique z € X such that f(z) = z and a unique
y € Y such that f(y) = w, so (z,y) is the unique pair with h(z,y) = (z,w). This
proves that h is a bijection. So

X xY|=|ZxW|.

Cardinal exponentiation is defined by 2% = |P(X)|. Prove that cardinal exponen-
tiation is well-defined, meaning that

9lXI — 9l2I

With f as in part (a), define h : P(X) — P(Z) by h(A) = {f(z) | = € A}. To prove
that h is injective, suppose that h(A) = h(B) for some sets A, B C X. For z € A,
f(z) € h(A) = h(B) so there is y € B such that f(y) = f(x). Since f is injective,
x =1y, sox € B. This proves that A C B. By the same argument, B C Aso A = B.
To prove h is surjective, for C C Z, let A = {x € X | f(x) € C}. For each z € C,
there is € A such that f(x) = z since f is surjective. Therefore h(A) = C, so h is
surjective. So

[PX)] = [P(Z)]



2. Let n be a positive integer. Prove that the set of positive integer divisors of n is finite.

Let A be the set of divisors of n. If a € A then a < n. Therefore A C {1,2,...,n}. The
set {1,2,...,n} has cardinality n and any subset of a finite set is finite, so A is finite.

3. (a) Prove that [{z e R| -1 <z < 1}| = |R].

In Problem Set 7 you were asked to find a bijection between {x e R | -1 < z < 1}

and R, for example f(z) = mlﬁ + ﬁ Therefore these sets have the same cardinality.

(b) Prove that [{z e R| -1 <z <1}| = |R|.
We have the following set containments

{reR|-1<z<1}C{reR|-1<z<1}CR
Therefore we get the relations
HreR|-1<z<1}<|{zeR|-1<z<1} <R

Since the left and right most cardinalities are equal to |R| by part (a), the middle
cardinality is also equal to |R| by the Cantor-Schréder-Bernstein Theorem.

4. Prove each of the following sets is countable.

(a) The set of prime numbers.
The set of prime numbers is a subset of Z, which is countable. A subset of a countable
set is countable.

(b) Z x Z.

(c) The set of all finite-length binary strings, |J,-,{0, 1}". (This is the set of all possible
computer files.)

For each n € Zsq, the set {0,1}" of binary strings of length n is finite (with size 2™).
Therefore we can enumerate all finite-length binary strings by first listing all strings
of length 0, then all strings of length 1, then all strings of length 2, etc:

(),0,1,00,01,10,11,000,001,010,011, 100, 101, 110, 111, 0000, . . .

This enumeration gives a bijection from Z-q to (J,-,{0,1}", so it is countable.
Alternate proof: Each set {0,1}" is finite, with cardinality 2" < Ry, so there is an
injective map h,, : {0,1}" — Zso. A concrete way to define h,, is to send each
binary string to the number it represents (e.g. hs(0101) = 5). Then define function
h: U, 0{0,1}" — Zsg X Z>o by h(a) = (n, hy(a)) for a € {0,1}". It’s clear from
construction that A is injective so

Ao, 13

n=0

S |ZZO X ZZO| = N().




5. Prove that the set of irrational numbers, R\ Q, is uncountable.

We proceed by contradiction. Suppose R\ Q is countable. We know that Q is countable
and that the union of two countable sets is countable. Therefore

R=R\QUQ

is also countable. But this contradicts the fact that R is uncountable. Therefore R\ Q is
uncountable.

6. Use Cantor’s diagonalization argument to prove that the set of all functions from Z-( to
Z~¢ is uncountable.

We proceed by contradiction, so assume that the set A of functions Z~g — Z~q is count-
able. Then there is a surjective function f : Z.q — A. For each n € Z-,, we get a
function f(n) : Zsy — Zso in A. We will construct a new function g € A that is not
among those in the image of f. For each n € Z~q, choose g(n) so that g(n) # (f(n))(n).
Then g # f(n) for all n € Z~o. But this contradicts the fact that f is surjective. Therefore
no such surjective function f can exist, so A is uncountable.

7. Let X be an infinte set.

(a) Prove that | X| > N,.
P(X)\ {0} is a collection of nonempty sets, so by the Axiom of Choice there is a
choice function ¢ : P(X) \ {0} — X with ¢(B) € B. Define function f : Z-q — X
as follows. For each n € Zwq, let f(n) = ¢(X \ {f(1),...,f(n —1)}). Each set
X\{f(),..., f(n—1)} is non-empty since X is infinite. The resulting function f is
injective since each value is chosen to be distinct from the previous ones. Therefore
|Zso| < 1X].

(b) Prove that | X|+1=|X].
[Hint: First prove it for the case that X is countably infinite. Then for the general
case, part (a) implies that X has a countably infinite subset Y. Use the fact that
Y[+1=Y]]
First consider the case that X = Z-(. The set Z>( is equal to the disjoint union
Z~oU{0} so |Zso| = | X |+ 1. The bijection g : Z>o — Z~q defined by g(z) =2 + 1
demonstrates that |Zso| = |Zso| so |X|+ 1 = |X|. We also proved this in class
(Hilbert’s Grand Hotel).

Now consider the general case of infinite set X. By part (a), there is an injective
function f : Z-g — X. Let Y C X be the image of f. Since |Y| = |Z-¢|, we have
Y|+ 1=|Y]|. Thesets X \Y and Y are disjoint and X = (X \Y)UY so

X[+1=|X\Y|+|Y|[+1=|X\Y|+|Y]|=]|X|



