MATH 108 Fall 2019 - Problem Set 8 solutions

due November 22

- 1. Let X, Y, Z, W be sets with |X| = |Z| and |Y| = |W|.
 - (a) Cardinal addition is defined by $|X| + |Y| = |X \cup Y|$ where X and Y are disjoint. Prove that cardinal addition is well-defined, meaning that

$$|X| + |Y| = |Z| + |W|$$

where X and Y are disjoint and Z and W are disjoint.

Since |X| = |Z| and |Y| = |W|, there are bijections $f : X \to Z$ and $g : Y \to W$. We define $h : X \cup Y \to Z \cup W$ by letting h(x) = f(x) if $x \in X$ and h(y) = g(y) if $y \in Y$. For each $z \in Z$, then there is a unique $x \in X$ such that h(x) = z and there is no $y \in Y$ with h(y) = z since $h(y) \in W$ for all $y \in Y$ and Z and W are disjoint. Similarly if $w \in W$ then there is a unique $y \in Y$ such that h(y) = w and no $x \in X$. This proves that h is a bijection. So

$$|X \cup Y| = |Z \cup W|.$$

(b) Cardinal multiplication is defined by $|X| \cdot |Y| = |X \times Y|$. Prove that cardinal multiplication is well-defined, meaning that

$$|X| \cdot |Y| = |Z| \cdot |W|.$$

With f, g as in part (a), define $h: X \times Y \to Z \times W$ by h(x, y) = (f(x), g(y)). For each $(z, w) \in Z \times W$, there is a unique $x \in X$ such that f(x) = z and a unique $y \in Y$ such that f(y) = w, so (x, y) is the unique pair with h(x, y) = (z, w). This proves that h is a bijection. So

$$|X \times Y| = |Z \times W|.$$

(c) Cardinal exponentiation is defined by $2^{|X|} = |\mathcal{P}(X)|$. Prove that cardinal exponentiation is well-defined, meaning that

$$2^{|X|} = 2^{|Z|}.$$

With f as in part (a), define $h: \mathcal{P}(X) \to \mathcal{P}(Z)$ by $h(A) = \{f(x) \mid x \in A\}$. To prove that h is injective, suppose that h(A) = h(B) for some sets $A, B \subseteq X$. For $x \in A$, $f(x) \in h(A) = h(B)$ so there is $y \in B$ such that f(y) = f(x). Since f is injective, x = y, so $x \in B$. This proves that $A \subseteq B$. By the same argument, $B \subseteq A$ so A = B. To prove h is surjective, for $C \subseteq Z$, let $A = \{x \in X \mid f(x) \in C\}$. For each $z \in C$, there is $x \in A$ such that f(x) = z since f is surjective. Therefore h(A) = C, so h is surjective. So

$$|\mathcal{P}(X)| = |\mathcal{P}(Z)|$$

- 2. Let n be a positive integer. Prove that the set of positive integer divisors of n is finite. Let A be the set of divisors of n. If $a \in A$ then $a \leq n$. Therefore $A \subseteq \{1, 2, ..., n\}$. The set $\{1, 2, ..., n\}$ has cardinality n and any subset of a finite set is finite, so A is finite.
- 3. (a) Prove that $|\{x \in \mathbb{R} \mid -1 < x < 1\}| = |\mathbb{R}|$. In Problem Set 7 you were asked to find a bijection between $\{x \in \mathbb{R} \mid -1 < x < 1\}$ and \mathbb{R} , for example $f(x) = \frac{1}{x+1} + \frac{1}{x-1}$. Therefore these sets have the same cardinality.
 - (b) Prove that $|\{x \in \mathbb{R} \mid -1 \le x \le 1\}| = |\mathbb{R}|$. We have the following set containments

$$\{x \in \mathbb{R} \mid -1 < x < 1\} \subseteq \{x \in \mathbb{R} \mid -1 \le x \le 1\} \subseteq \mathbb{R}.$$

Therefore we get the relations

$$|\{x \in \mathbb{R} \mid -1 < x < 1\}| \le |\{x \in \mathbb{R} \mid -1 \le x \le 1\}| \le |\mathbb{R}|.$$

Since the left and right most cardinalities are equal to $|\mathbb{R}|$ by part (a), the middle cardinality is also equal to $|\mathbb{R}|$ by the Cantor-Schröder-Bernstein Theorem.

- 4. Prove each of the following sets is countable.
 - (a) The set of prime numbers.

The set of prime numbers is a subset of \mathbb{Z} , which is countable. A subset of a countable set is countable.

(b) $\mathbb{Z} \times \mathbb{Z}$.

 $|\mathbb{Z} \times \mathbb{Z}| = |\mathbb{Z}| \cdot |\mathbb{Z}| = \aleph_0 \cdot \aleph_0 = \aleph_0.$

(c) The set of all finite-length binary strings, $\bigcup_{n=0}^{\infty} \{0,1\}^n$. (This is the set of all possible computer files.)

For each $n \in \mathbb{Z}_{\geq 0}$, the set $\{0, 1\}^n$ of binary strings of length n is finite (with size 2^n). Therefore we can enumerate all finite-length binary strings by first listing all strings of length 0, then all strings of length 1, then all strings of length 2, etc:

 $(), 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, \dots$

This enumeration gives a bijection from $\mathbb{Z}_{>0}$ to $\bigcup_{n=0}^{\infty} \{0,1\}^n$, so it is countable.

Alternate proof: Each set $\{0,1\}^n$ is finite, with cardinality $2^n < \aleph_0$, so there is an injective map $h_n : \{0,1\}^n \to \mathbb{Z}_{\geq 0}$. A concrete way to define h_n is to send each binary string to the number it represents (e.g. $h_4(0101) = 5$). Then define function $h : \bigcup_{n=0}^{\infty} \{0,1\}^n \to \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}$ by $h(a) = (n, h_n(a))$ for $a \in \{0,1\}^n$. It's clear from construction that h is injective so

$$\left| \bigcup_{n=0}^{\infty} \{0,1\}^n \right| \le |\mathbb{Z}_{\ge 0} \times \mathbb{Z}_{\ge 0}| = \aleph_0$$

5. Prove that the set of irrational numbers, $\mathbb{R} \setminus \mathbb{Q}$, is uncountable.

We proceed by contradiction. Suppose $\mathbb{R} \setminus \mathbb{Q}$ is countable. We know that \mathbb{Q} is countable and that the union of two countable sets is countable. Therefore

$$\mathbb{R} = (\mathbb{R} \setminus \mathbb{Q}) \cup \mathbb{Q}$$

is also countable. But this contradicts the fact that \mathbb{R} is uncountable. Therefore $\mathbb{R} \setminus \mathbb{Q}$ is uncountable.

6. Use Cantor's diagonalization argument to prove that the set of all functions from $\mathbb{Z}_{>0}$ to $\mathbb{Z}_{>0}$ is uncountable.

We proceed by contradiction, so assume that the set A of functions $\mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ is countable. Then there is a surjective function $f : \mathbb{Z}_{>0} \to A$. For each $n \in \mathbb{Z}_{>0}$, we get a function $f(n) : \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ in A. We will construct a new function $g \in A$ that is not among those in the image of f. For each $n \in \mathbb{Z}_{>0}$, choose g(n) so that $g(n) \neq (f(n))(n)$. Then $g \neq f(n)$ for all $n \in \mathbb{Z}_{>0}$. But this contradicts the fact that f is surjective. Therefore no such surjective function f can exist, so A is uncountable.

- 7. Let X be an infinite set.
 - (a) Prove that $|X| \ge \aleph_0$.

 $\mathcal{P}(X) \setminus \{\emptyset\}$ is a collection of nonempty sets, so by the Axiom of Choice there is a choice function $c : \mathcal{P}(X) \setminus \{\emptyset\} \to X$ with $c(B) \in B$. Define function $f : \mathbb{Z}_{>0} \to X$ as follows. For each $n \in \mathbb{Z}_{>0}$, let $f(n) = c(X \setminus \{f(1), \ldots, f(n-1)\})$. Each set $X \setminus \{f(1), \ldots, f(n-1)\}$ is non-empty since X is infinite. The resulting function f is injective since each value is chosen to be distinct from the previous ones. Therefore $|\mathbb{Z}_{>0}| \leq |X|$.

(b) Prove that |X| + 1 = |X|.

[Hint: First prove it for the case that X is countably infinite. Then for the general case, part (a) implies that X has a countably infinite subset Y. Use the fact that |Y| + 1 = |Y|.]

First consider the case that $X = \mathbb{Z}_{>0}$. The set $\mathbb{Z}_{\geq 0}$ is equal to the disjoint union $\mathbb{Z}_{>0} \cup \{0\}$ so $|\mathbb{Z}_{\geq 0}| = |X| + 1$. The bijection $g : \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{>0}$ defined by g(x) = x + 1 demonstrates that $|\mathbb{Z}_{\geq 0}| = |\mathbb{Z}_{>0}|$ so |X| + 1 = |X|. We also proved this in class (Hilbert's Grand Hotel).

Now consider the general case of infinite set X. By part (a), there is an injective function $f : \mathbb{Z}_{>0} \to X$. Let $Y \subseteq X$ be the image of f. Since $|Y| = |\mathbb{Z}_{>0}|$, we have |Y| + 1 = |Y|. The sets $X \setminus Y$ and Y are disjoint and $X = (X \setminus Y) \cup Y$ so

$$|X| + 1 = |X \setminus Y| + |Y| + 1 = |X \setminus Y| + |Y| = |X|.$$