
MATH 108 Fall 2019 - Problem Set 8 solutions

due November 22

1. Let X, Y, Z,W be sets with |X| = |Z| and |Y | = |W |.

(a) Cardinal addition is defined by |X| + |Y | = |X ∪ Y | where X and Y are disjoint.
Prove that cardinal addition is well-defined, meaning that

|X|+ |Y | = |Z|+ |W |

where X and Y are disjoint and Z and W are disjoint.

Since |X| = |Z| and |Y | = |W |, there are bijections f : X → Z and g : Y → W .
We define h : X ∪ Y → Z ∪W by letting h(x) = f(x) if x ∈ X and h(y) = g(y) if
y ∈ Y . For each z ∈ Z, then there is a unique x ∈ X such that h(x) = z and there
is no y ∈ Y with h(y) = z since h(y) ∈ W for all y ∈ Y and Z and W are disjoint.
Similarly if w ∈ W then there is a unique y ∈ Y such that h(y) = w and no x ∈ X.
This proves that h is a bijection. So

|X ∪ Y | = |Z ∪W |.

(b) Cardinal multiplication is defined by |X| · |Y | = |X × Y |. Prove that cardinal
multiplication is well-defined, meaning that

|X| · |Y | = |Z| · |W |.

With f, g as in part (a), define h : X × Y → Z ×W by h(x, y) = (f(x), g(y)). For
each (z, w) ∈ Z ×W , there is a unique x ∈ X such that f(x) = z and a unique
y ∈ Y such that f(y) = w, so (x, y) is the unique pair with h(x, y) = (z, w). This
proves that h is a bijection. So

|X × Y | = |Z ×W |.

(c) Cardinal exponentiation is defined by 2|X| = |P(X)|. Prove that cardinal exponen-
tiation is well-defined, meaning that

2|X| = 2|Z|.

With f as in part (a), define h : P(X)→ P(Z) by h(A) = {f(x) | x ∈ A}. To prove
that h is injective, suppose that h(A) = h(B) for some sets A,B ⊆ X. For x ∈ A,
f(x) ∈ h(A) = h(B) so there is y ∈ B such that f(y) = f(x). Since f is injective,
x = y, so x ∈ B. This proves that A ⊆ B. By the same argument, B ⊆ A so A = B.

To prove h is surjective, for C ⊆ Z, let A = {x ∈ X | f(x) ∈ C}. For each z ∈ C,
there is x ∈ A such that f(x) = z since f is surjective. Therefore h(A) = C, so h is
surjective. So

|P(X)| = |P(Z)|.



2. Let n be a positive integer. Prove that the set of positive integer divisors of n is finite.

Let A be the set of divisors of n. If a ∈ A then a ≤ n. Therefore A ⊆ {1, 2, . . . , n}. The
set {1, 2, . . . , n} has cardinality n and any subset of a finite set is finite, so A is finite.

3. (a) Prove that |{x ∈ R | −1 < x < 1}| = |R|.
In Problem Set 7 you were asked to find a bijection between {x ∈ R | −1 < x < 1}
and R, for example f(x) = 1

x+1
+ 1

x−1 . Therefore these sets have the same cardinality.

(b) Prove that |{x ∈ R | −1 ≤ x ≤ 1}| = |R|.
We have the following set containments

{x ∈ R | −1 < x < 1} ⊆ {x ∈ R | −1 ≤ x ≤ 1} ⊆ R.

Therefore we get the relations

|{x ∈ R | −1 < x < 1}| ≤ |{x ∈ R | −1 ≤ x ≤ 1}| ≤ |R|.

Since the left and right most cardinalities are equal to |R| by part (a), the middle
cardinality is also equal to |R| by the Cantor-Schröder-Bernstein Theorem.

4. Prove each of the following sets is countable.

(a) The set of prime numbers.

The set of prime numbers is a subset of Z, which is countable. A subset of a countable
set is countable.

(b) Z× Z.

|Z× Z| = |Z| · |Z| = ℵ0 · ℵ0 = ℵ0.
(c) The set of all finite-length binary strings,

⋃∞
n=0{0, 1}n. (This is the set of all possible

computer files.)

For each n ∈ Z≥0, the set {0, 1}n of binary strings of length n is finite (with size 2n).
Therefore we can enumerate all finite-length binary strings by first listing all strings
of length 0, then all strings of length 1, then all strings of length 2, etc:

(), 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, . . .

This enumeration gives a bijection from Z>0 to
⋃∞

n=0{0, 1}n, so it is countable.

Alternate proof: Each set {0, 1}n is finite, with cardinality 2n < ℵ0, so there is an
injective map hn : {0, 1}n → Z≥0. A concrete way to define hn is to send each
binary string to the number it represents (e.g. h4(0101) = 5). Then define function
h :
⋃∞

n=0{0, 1}n → Z≥0 × Z≥0 by h(a) = (n, hn(a)) for a ∈ {0, 1}n. It’s clear from
construction that h is injective so∣∣∣∣∣

∞⋃
n=0

{0, 1}n
∣∣∣∣∣ ≤ |Z≥0 × Z≥0| = ℵ0.



5. Prove that the set of irrational numbers, R \Q, is uncountable.

We proceed by contradiction. Suppose R \Q is countable. We know that Q is countable
and that the union of two countable sets is countable. Therefore

R = (R \Q) ∪Q

is also countable. But this contradicts the fact that R is uncountable. Therefore R \Q is
uncountable.

6. Use Cantor’s diagonalization argument to prove that the set of all functions from Z>0 to
Z>0 is uncountable.

We proceed by contradiction, so assume that the set A of functions Z>0 → Z>0 is count-
able. Then there is a surjective function f : Z>0 → A. For each n ∈ Z>0, we get a
function f(n) : Z>0 → Z>0 in A. We will construct a new function g ∈ A that is not
among those in the image of f . For each n ∈ Z>0, choose g(n) so that g(n) 6= (f(n))(n).
Then g 6= f(n) for all n ∈ Z>0. But this contradicts the fact that f is surjective. Therefore
no such surjective function f can exist, so A is uncountable.

7. Let X be an infinte set.

(a) Prove that |X| ≥ ℵ0.
P(X) \ {∅} is a collection of nonempty sets, so by the Axiom of Choice there is a
choice function c : P(X) \ {∅} → X with c(B) ∈ B. Define function f : Z>0 → X
as follows. For each n ∈ Z>0, let f(n) = c(X \ {f(1), . . . , f(n − 1)}). Each set
X \{f(1), . . . , f(n−1)} is non-empty since X is infinite. The resulting function f is
injective since each value is chosen to be distinct from the previous ones. Therefore
|Z>0| ≤ |X|.

(b) Prove that |X|+ 1 = |X|.
[Hint: First prove it for the case that X is countably infinite. Then for the general
case, part (a) implies that X has a countably infinite subset Y . Use the fact that
|Y |+ 1 = |Y |.]
First consider the case that X = Z>0. The set Z≥0 is equal to the disjoint union
Z>0 ∪ {0} so |Z≥0| = |X|+ 1. The bijection g : Z≥0 → Z>0 defined by g(x) = x + 1
demonstrates that |Z≥0| = |Z>0| so |X| + 1 = |X|. We also proved this in class
(Hilbert’s Grand Hotel).

Now consider the general case of infinite set X. By part (a), there is an injective
function f : Z>0 → X. Let Y ⊆ X be the image of f . Since |Y | = |Z>0|, we have
|Y |+ 1 = |Y |. The sets X \ Y and Y are disjoint and X = (X \ Y ) ∪ Y so

|X|+ 1 = |X \ Y |+ |Y |+ 1 = |X \ Y |+ |Y | = |X|.


