MATH 108 Fall 2019 - Problem Set 9

due December 2

- 1. Prove that $\mathfrak{c} + \mathfrak{c} = \mathfrak{c}$ (where $\mathfrak{c} = |\mathbb{R}|$, the cardinality of the continuum).
- 2. Order the following cardinalities: |(0,1)|, |[0,1]|, $|\{0,1\}|$, $|\{0\}|$, $|\mathcal{P}(\mathbb{R})|$, $|\mathbb{Q}|$, $|\emptyset|$, $|\mathbb{R}^2|$, $|\mathcal{P}(\mathcal{P}(\mathbb{R}))|$, $|\mathbb{R}|$, $|\mathcal{P}(\mathbb{Q})|$.
- 3. Determine whether each algebraic structure is a group. If no, which properties does it fail? If yes, is it abelian? Find an identity element if one exists.
 - (a) $(\mathbb{Z}_{>0}, +).$
 - (b) $(\mathbb{Z}/4\mathbb{Z}, +).$
 - (c) $(\mathbb{Z}/4\mathbb{Z}\setminus\{\overline{0}\},\cdot).$
 - (d) (The set of functions $\{1, 2, 3\} \rightarrow \{1, 2, 3\}$, composition).
 - (e) (The set of bijective functions $\{1, 2, 3\} \rightarrow \{1, 2, 3\}$, composition).
 - (f) (The set of 2×2 real matrices with determininant 1, matrix multiplication).
- 4. Write the Cayley table for the following finite algebraic structures.
 - (a) $(\mathbb{Z}/4\mathbb{Z}, +)$.
 - (b) $(\mathbb{Z}/4\mathbb{Z}, \cdot)$.
 - (c) (The set of bijective functions $\{1, 2, 3\} \rightarrow \{1, 2, 3\}$, composition).