MATH 108 Fall 2019 - Problem Set 9 solutions

due December 2

1. Prove that $\mathfrak{c} + \mathfrak{c} = \mathfrak{c}$ (where $\mathfrak{c} = |\mathbb{R}|$, the cardinality of the continuum).

We know that $|\mathbb{R}| = |(0,1)| = \mathfrak{c}$. In addition, $|(1,2)| = \mathfrak{c}$ since there is bijection $f : (0,1) \to (1,2)$ defined by f(x) = x + 1. Since intervals (0,1) and (1,2) are disjoint,

$$\mathbf{c} + \mathbf{c} = |(0, 1) \cup (1, 2)|.$$

By the containment relations

$$(0,1) \subseteq (0,1) \cup (1,2) \subseteq \mathbb{R},$$

 $\mathfrak{c} = |(0,1)| \le |(0,1) \cup (1,2)| \le |\mathbb{R}| = \mathfrak{c}.$

Therefore $\mathfrak{c} + \mathfrak{c} = \mathfrak{c}$.

2. Order the following cardinalities: |(0,1)|, |[0,1]|, $|\{0,1\}|$, $|\{0\}|$, $|\mathcal{P}(\mathbb{R})|$, $|\mathbb{Q}|$, $|\emptyset|$, $|\mathbb{R}^2|$, $|\mathcal{P}(\mathcal{P}(\mathbb{R}))|$, $|\mathbb{R}|$, $|\mathcal{P}(\mathbb{Q})|$.

 $|\emptyset| < |\{0\}| < |\{0,1\}| < |\mathbb{Q}| < |\mathbb{R}| = |(0,1)| = |[0,1]| = |\mathcal{P}(\mathbb{Q})| = |\mathbb{R}^2| < |\mathcal{P}(\mathbb{R})| < |\mathcal{P}(\mathcal{P}(\mathbb{R}))|.$

- 3. Determine whether each algebraic structure is a group. If no, which properties does it fail? If yes, is it abelian? Find an identity element if one exists.
 - (a) $(\mathbb{Z}_{>0}, +).$

Not a group. $\mathbb{Z}_{>0}$ has no additive identity, and elements have no additive inverses. There are no identity elements.

- (b) (Q, ·).
 Not a group. 0 has no multiplicative inverse. The identity element is 1.
- (c) $(\mathbb{Z}/4\mathbb{Z}, +)$. Group. It is abelian because $\overline{x} + \overline{y} = \overline{x + y} = \overline{y} + \overline{x}$. The identity element is $\overline{0}$.
- (d) (Z/4Z \ {0}, ·).
 Not a group. Not even an algebraic structure, because 2 · 2 = 0 is not in the set Z/4Z \ {0}. Therefore the operation · is not well-defined.
- (e) (The set of functions $\{1, 2, 3\} \rightarrow \{1, 2, 3\}$, composition). Not a group. If function f is not injective, then it has no inverse. The identity element is the identity function $I_{\{1,2,3\}}$.
- (f) (The set of bijective functions $\{1, 2, 3\} \rightarrow \{1, 2, 3\}$, composition). Group. It is not abelian. For example let f be the function that switches 1 and 2, and g be the function that switches 2 and 3. Then $g \circ f(1) = 3$ but $f \circ g(1) = 2$. The identity element is the identity function $I_{\{1,2,3\}}$.

(g) (The set of 2×2 real matrices with determininant 1, matrix multiplication). Group. It is not abelian. For example let

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

Then

$$AB = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}, \quad BA = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}.$$

The identity element is the identity matrix,

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

4. Write the Cayley table for the following finite algebraic structures.

(a)	$(\mathbb{Z}/4\mathbb{Z},+).$								
	+	$\overline{0}$	1	$\overline{2}$	$\overline{3}$				
	$\overline{0}$	$\overline{0}$	1	$\overline{2}$	$\overline{3}$				
	$\overline{1}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{0}$				
	$\overline{2}$	$\overline{2}$	$\overline{3}$	$\overline{0}$	$\overline{1}$				
	$\overline{3}$	$\overline{3}$	$\overline{0}$	$\overline{1}$	$\overline{2}$				
(b)	$(\mathbb{Z}/2)$	$4\mathbb{Z},$	·).						
(b)	$(\mathbb{Z}/2$	$4\mathbb{Z},$ $\overline{0}$	\cdot). $\overline{1}$	$\overline{2}$	$\overline{3}$				
(b)	$\frac{\cdot}{\overline{0}}$	$\frac{4\mathbb{Z},}{\overline{0}}$	\cdot). $\overline{1}$ $\overline{0}$	$\overline{2}$ $\overline{0}$	$\overline{3}$ $\overline{0}$				
(b)	$\frac{ \mathbb{Z}/2 }{\frac{\overline{0}}{\overline{1}}}$	$\frac{4\mathbb{Z}}{\overline{0}}$ $\frac{\overline{0}}{\overline{0}}$	$ \begin{array}{c} \cdot). \\ \overline{1} \\ \overline{0} \\ \overline{1} \end{array} $	$\overline{\frac{\overline{2}}{\overline{0}}}$	$\overline{\frac{3}{0}}$				
(b)	$\begin{array}{c c} (\mathbb{Z}/2) \\ \hline \\ $	$ \begin{array}{c} 4\mathbb{Z},\\ \overline{0}\\ \overline{0}\\ \overline{0}\\ \overline{0}\\ \overline{0}\\ \overline{0}\end{array} $	$ \begin{array}{c} \cdot). \\ \overline{1} \\ \overline{0} \\ \overline{1} \\ \overline{2} \end{array} $	$ \frac{\overline{2}}{\overline{0}} \\ \overline{2} \\ \overline{0} $					

(c) (The set of bijective functions $\{1, 2, 3\} \rightarrow \{1, 2, 3\}$, composition). Representing each bijection $f : \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ by its sequence of values, (f(1), f(2), f(3)),

(1, 2, 3)	(1, 3, 2)	(2, 1, 3)	(2, 3, 1)	(3, 1, 2)	(3, 2, 1)			
(1, 2, 3)	(1, 3, 2)	(2, 1, 3)	(2, 3, 1)	(3, 1, 2)	(3, 2, 1)			
(1, 3, 2)	(1, 2, 3)	(3, 1, 2)	(3, 2, 1)	(2, 1, 3)	(2, 3, 1)			
(2, 1, 3)	(2, 3, 1)	(1, 2, 3)	(1, 3, 2)	(3, 2, 1)	(3, 1, 2)			
(2, 3, 1)	(2, 1, 3)	(3, 2, 1)	(3, 1, 2)	(1, 2, 3)	(1, 3, 2)			
(3, 1, 2)	(3, 2, 1)	(1, 3, 2)	(1, 2, 3)	(2, 3, 1)	(2, 1, 3)			
(3, 2, 1)	(3, 1, 2)	(2, 3, 1)	(2, 1, 3)	(1, 3, 2)	(1, 2, 3)			
	$\begin{array}{c} (1,2,3)\\ \hline (1,2,3)\\ (1,3,2)\\ (2,1,3)\\ (2,3,1)\\ (3,1,2)\\ (3,2,1) \end{array}$	$\begin{array}{cccc} (1,2,3) & (1,3,2) \\ \hline (1,2,3) & (1,3,2) \\ (1,3,2) & (1,2,3) \\ (2,1,3) & (2,3,1) \\ (2,3,1) & (2,1,3) \\ (3,1,2) & (3,2,1) \\ (3,2,1) & (3,1,2) \end{array}$	$\begin{array}{c ccccc} (1,2,3) & (1,3,2) & (2,1,3) \\ \hline (1,2,3) & (1,3,2) & (2,1,3) \\ \hline (1,3,2) & (1,2,3) & (3,1,2) \\ (2,1,3) & (2,3,1) & (1,2,3) \\ (2,3,1) & (2,1,3) & (3,2,1) \\ (3,1,2) & (3,2,1) & (1,3,2) \\ (3,2,1) & (3,1,2) & (2,3,1) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			