MATH 108, Final Exam, March 22, 2019 NAME:

No notes or calculators are allowed. Show all your work.

problem	1	2	3	4	5	6	7	8	9	total
points										
maximum	5	5	4	4	6	5	6	5	5	45

1. Prove or disprove that the following set is a subgroup of $(\mathbb{R}^2, +)$: [/5]

 $\{(0,y) \mid y \in \mathbb{R} \text{ and } y \ge 0\}.$

2. Let A be the set of functions from \mathbb{N}_1 to $\mathbb{Z}/3\mathbb{Z}$. Prove that A is uncountable. [/5]

4. Find the cardinality of the set of all **non**-injective functions from $\{1,2\}$ to $\{1,2,3,4\}$.

- 5. Let $f : \mathbb{Z}^2 \to \mathbb{Z}$ defined by f(x, y) = 1 + x + y.
 - (a) Is f injective? Yes or No (circle one)
 - Is f surjective? Yes or No (circle one)

(b) If f is injective, find a left-inverse. If f is surjective, find a right-inverse. [/4]

[/2]

6. Let S be a set with partial order \sqsubseteq and T be a set with partial order \preceq . Let $f: S \to T$ be an *order-embedding* function, meaning that $x \sqsubseteq y$ if and only if $f(x) \preceq f(y)$. Prove that f is injective. [/5]

7. Let G be the group $(\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, +)$. The group operation is defined as

$$(a,b) + (c,d) = (a+c,b+d).$$

(a) Find the order of $(\overline{1},\overline{1})$ and the order of $(\overline{2},\overline{0})$. [/4]

(b) • Is G abelian? Yes or No (circle one)
• Is G cyclic? Yes or No (circle one)

[/2]

8. Find the cardinality of $\mathbb{R} \setminus \mathbb{Z}$ and prove your answer.

9. Let G and H be groups and let $f: G \to H$ be a group homomorphism. Prove that if G is abelian and f is surjective, then H is abelian. [/5]