MATH 108 Winter 2019 - Problem Set 5

due February 22

- 1. Using modular arithmetic, prove that for all postive integers n,
 - (a) $10^n 1$ is divisible by 3.
 - (b) $n^4 + 2n^3 n^2 2n$ is divisible by 4.
 - (c) $1^n + 2^n + 3^n + 4^n$ is a multiple of 5 or one less than a multiple of 5.
- 2. The "Cancellation Law" for $\mathbb{Z}/m\mathbb{Z}$ is the statement: For all $x, y, z \in \mathbb{Z}$, if $xy \equiv xz \pmod{m}$ and $x \not\equiv 0 \pmod{m}$ then $y \equiv z \pmod{m}$.
 - (a) Prove that if m is prime then the Cancellation Law for $\mathbb{Z}/m\mathbb{Z}$ is true.
 - (b) Prove that if m is composite then the Cancellation Law for $\mathbb{Z}/m\mathbb{Z}$ is false.
- 3. Let A and B be subsets of \mathbb{Z} . In the poset $(\mathcal{P}(\mathbb{Z}), \subseteq)$, prove that the greatest lower bound of $\{A, B\}$ is $A \cap B$.
- 4. Let A be the set of divisors of 36, $A = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$. Draw the Hasse diagram for the poset (A, |).
- 5. For each function f, determine if it is injective. If yes, find a *left-inverse* of f, which is a function g such that $g \circ f$ is the identity.
 - (a) $f : \mathbb{R} \to \mathbb{R}^2$ defined by f(x) = (x, x).
 - (b) $f : \mathbb{R}^2 \to \mathbb{R}$ defined by f(x, y) = x + y.
 - (c) $f : \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = 2x.
 - (d) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = e^x$.
 - (e) $f : \mathbb{Z} \to \{0\}$ defined by f(x) = 0.
- 6. For each function f in Problem 5, determine if it is surjective. If yes, find a *right-inverse* of f, which is a function g such that $f \circ g$ is the identity.
- 7. Let $f: A \to B$ and $g: B \to C$.
 - (a) Prove that if $g \circ f$ is injective then f is injective.
 - (b) Find an example of f and g where $g \circ f$ is injective but g is not injective.
- 8. For each pair of sets, find a bijection from the first to the second.
 - (a) \mathbb{N}_1 and \mathbb{N}_0 .
 - (b) \mathbb{R}^2 and \mathbb{C} .
 - (c) \mathbb{Z} and \mathbb{N}_0 .
 - (d) $\{x \in \mathbb{R} \mid -1 < x < 1\}$ and \mathbb{R} .