
Practice Problem Solutions

1. Let f : A → C and g : B → D be functions and let h : A × B → C × D be defined by
h(a, b) = (f(a), g(b)).

(a) Prove that if f and g are injective then h is injective.

Suppose f and g are injective and that h(a, b) = h(c, d). Then (f(a), g(b)) = (f(c), g(d))
so f(a) = f(c) and g(b) = g(d). Since f and g are injective, this implies a = c and b = d.
Therefore (a, b) = (c, d), so h is injective.

(b) Prove that if f and g are surjective then h is surjective.

Suppose f and g are surjective and that (c, d) ∈ C×D. Since f and g are sujective, there
exists a ∈ A such that f(a) = c and b ∈ B such that g(b) = d. Therefore h(a, b) = (c, d),
so h is surjective.

2. Determine if each function is injective and if it is surjective.

(a) f : R→ R defined by f(x) = x3.

Injective and surjective.

(b) f : R→ R defined by f(x) = |x|.
Neither.

(c) f : R2 → R defined by f(x, y) = x− y.

Surjective.

(d) f : Z/6Z→ Z/6Z defined by f(x) = 2x+ 1.

Neither.

3. Find a right-inverse for the quotient map q : Z→ Z/3Z defined by q(x) = x.

Let g : Z/3Z→ Z be defined by g(0) = 0, g(1) = 1, and g(2) = 2.

4. Prove that there exists a bijective function f : R→ R2.

On Problem Set 7 we proved that |P(N1)×P(N1)| = c. Since |P(N1)| = |R| = c, this implies
that

|R× R| = |P(N1)× P(N1)| = c = |R|.

Since R and R2 have the same cardinality, there exists a bijection between them.

5. Find the cardinality of each set and prove your answer.

(a) P(Z× {1, 2, 3}).
The cardinality is c. Z×{1, 2, 3} is countable because it is the product of two countable
sets. Since it’s infinite, the cardinality must be ℵ0. Therefore |Z×{1, 2, 3}| = |N1|. Then
|P(Z× {1, 2, 3})| = |P(N1)| = c.

(b) Q ∩ [0, 1].

The cardinality is ℵ0. This set is a subset of Q, so |Q ∩ [0, 1]| ≤ |Q| = ℵ0. On the other
hand there is injective function f : N1 → Q ∩ [0, 1] defined by f(n) = 1/n. Therefore
|Q ∩ [0, 1]| ≥ ℵ0. Then apply the Cantor-Schröder-Bernstein Theorem.



(c) The symmetric group on four elements, S4.

The cardinality is 24. The elements of the symmetric group on four elements are the
bijections from {1, 2, 3, 4} to itself. On Problem Set 6 we proved that the set of such
functions has cardinality 4! = 24.

6. Let A be the set of functions from R to Z. Prove that A is uncountable.

Let f : R→ A be defined by f(x) = χ{x}, where χ{x} is the function that maps x to 1 and all
other real numbers to 0. If x 6= y then χ{x}(x) = 1 but χ{y}(x) = 0 so χ{x} 6= χ{y}. Therefore
f is injective. So |A| ≥ |R| > ℵ0.

7. Prove that if A is an infinite set and B is a countably infinite set, then |A ∪B| = |A|.
Because B is countable, B \ A is also countable. As we proved on Problem Set 7, A has
a countably infinite subset C. The union of countable sets is countable so C ∪ (B \ A) is
countably infinite. Since |C| = |C ∪ (B \ A)|, there exists a bijection f : C → C ∪ (B \ A).
Define g : A→ A ∪B by

g(x) =

{
f(x) if x ∈ C
x if x /∈ C

.

g bijectively maps A \C to itself since it is the identity function here, and bijectively maps C
to C ∪ (B \A) using f . Since A is the disjoint union of A \C and C, and A∪B is the disjoint
union of A \ C and C ∪ (B \ A), g is a bijection.

8. Prove for each pair of groups that they are not isomorphic.

(a) (Z/5Z,+) and (Z/6Z,+)

(Z/5Z,+) has order 5 but (Z/6Z,+) has order 6 so they are not isomorphic.

(b) The symmetry group of a square and (Z/8Z,+).

The symmetry group of a square is not abelian but (Z/8Z,+) is abelian so they are not
isomorphic. Alternatively, since (Z/8Z,+) is cyclic, it has at least one element of order 8
(actually four of them), but the symmetry group of the square has no elements of order
8.

(c) (Z,+) and (Q \ {0}, ·).
(Z,+) is cyclic, because it is generated by 1. Suppose (Q \ {0}, ·) is cyclic, so it has a
generator a/b where a and b are nonzero integers. Then

〈a/b〉 = {. . . , (a/b)−2, (a/b)−1, 1, (a/b)1, (a/b)2, . . .} = Q \ {0}.

Let p be a prime that appears neither in the prime factorizations of a nor b. Since
p ∈ Q \ {0}, p = (a/b)n for some n ∈ Z. If n > 0 then an = pbn implies that p divides b.
If n < 0 then b−n = pa−n implies that p divides a. If n = 0 then p = 1. None of these
conclusions are true, which is a contradiction. Therefore (Q \ {0}, ·) is not cyclic.

9. Prove that (P(Z),∆) is a group where ∆ denotes the symmetric difference operation defined
as A∆B = (A \B) ∪ (B \ A).

Associativity: For A,B,C ∈ P(Z), we can show that (A∆ B) ∆ C is the set of integers that
appear in exactly one of A,B,C or in all three,

(A∆B) ∆ C = (A \ (B ∪ C)) ∪ (B \ (A ∪ C)) ∪ (C \ (A ∪B)) ∪ (A ∩B ∩ C).



This is symmetric in all three sets, so it’s equal to A∆ (B ∆ C).

Identity: The identity element is ∅ because

A∆ ∅ = (A \ ∅) ∪ (∅ \ A) = A ∪ ∅ = A,

and similarly for ∅∆ A.

Inverses: The inverse of A is A because

A∆ A = (A \ A) ∪ (A \ A) = ∅ ∪ ∅ = ∅.

10. Write the Cayley table for (Z/5Z,+).

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

11. Find the order of each element of (Z/8Z,+).

• 0 has order 1,

• 1 has order 8,

• 2 has order 4,

• 3 has order 8,

• 4 has order 2,

• 5 has order 8,

• 6 has order 4,

• 7 has order 8.

12. Prove that the set {(x, x) | x ∈ R} is a subgroup of (R2,+).

Suppose a, b ∈ H = {(x, x) | x ∈ R}. Then a = (x, x) and b = (y, y) for some x, y ∈ R. Then
a− b = (x− y, x− y), which is in H. Therefore H is a subgroup.

13. Let f : G → H be a group homomorphism and let K be a subgroup of G. Prove that
{f(k) | k ∈ K} is a sugroup of H.

Let L = {f(k) | k ∈ K}. Suppose a, b ∈ L so a = f(x) and b = f(y) for some x, y ∈ K. Since
K is a subgroup, y−1 ∈ K, and then xy−1 ∈ K, so f(xy−1) ∈ L. Using the fact that f is a
homomorphism,

f(xy−1) = f(x)f(y−1) = f(x)f(y)−1 = ab−1.

Since ab−1 ∈ L, L is a subgroup.

14. Let R be a ring with multiplicative indentity 1. For any a ∈ R prove that (−1) · a = −a.

We want to show that (−1)·a is the additive inverse of a. Since 1 is the multiplicative identity,
we have 1 · a = a · 1 = a. Then

(−1) · a+ a = (−1) · a+ 1 · a = (−1 + 1) · a = 0 · a = 0,

which proves that (−1) · a = −a.


