Practice Problem Solutions

1. Let f: A — C and g : B — D be functions and let h : A x B — C' x D be defined by
h(a,b) = (f(a), g(b)).

(a) Prove that if f and g are injective then h is injective.
Suppose f and g are injective and that h(a,b) = h(c,d). Then (f(a), g(b)) = (f(c), g(d))
so f(a) = f(c) and g(b) = g(d). Since f and g are injective, this implies a = ¢ and b = d.
Therefore (a,b) = (¢,d), so h is injective.

(b) Prove that if f and g are surjective then h is surjective.

Suppose f and g are surjective and that (¢,d) € C'x D. Since f and g are sujective, there
exists a € A such that f(a) = ¢ and b € B such that ¢g(b) = d. Therefore h(a,b) = (¢,d),
so h is surjective.

2. Determine if each function is injective and if it is surjective.

(a) f:R — R defined by f(z) = 3.
Injective and surjective.

(b) f:R — R defined by f(z) = |z|.

Neither.

(c) f:R? — R defined by f(z,y) =z —y.
Surjective.

(d) f:Z/6Z — Z/6Z defined by f(T) = 2x + 1.
Neither.

3. Find a right-inverse for the quotient map ¢ : Z — Z/3Z defined by ¢(z) = 7.
Let g : Z/3Z — Z be defined by ¢g(0) =0, g(1) =1, and ¢(2) = 2.

4. Prove that there exists a bijective function f: R — R2.

On Problem Set 7 we proved that |P(N;) x P(Ny)| = ¢. Since |[P(Ny)| = |R| = ¢, this implies
that

IR x R| = |P(Ny) x P(Ny)| = ¢ = |R].
Since R and R? have the same cardinality, there exists a bijection between them.

5. Find the cardinality of each set and prove your answer.

(a) P(Z x {1,2,3}).
The cardinality is ¢. Z x {1, 2,3} is countable because it is the product of two countable
sets. Since it’s infinite, the cardinality must be ¥y. Therefore |Z x {1,2,3}| = |N;|. Then
[P(Zx{1,2,3})] = [P(Ny)[ = c.

(b) Qno,1].
The cardinality is Ro. This set is a subset of Q, so |[Q N[0, 1]] < |Q| = Ry. On the other

hand there is injective function f : Ny — QN [0, 1] defined by f(n) = 1/n. Therefore
|Q N[0, 1]| > Ny. Then apply the Cantor-Schroder-Bernstein Theorem.



(¢) The symmetric group on four elements, S,.

The cardinality is 24. The elements of the symmetric group on four elements are the
bijections from {1,2,3,4} to itself. On Problem Set 6 we proved that the set of such
functions has cardinality 4! = 24.

6. Let A be the set of functions from R to Z. Prove that A is uncountable.

Let f: R — A be defined by f(x) = Xx{z}, where x{z is the function that maps  to 1 and all
other real numbers to 0. If x # y then x(y)(z) = 1 but xy(2) = 0 50 X2} 7# Xy} Therefore
f is injective. So |A| > |R| > Ry.

7. Prove that if A is an infinite set and B is a countably infinite set, then |AU B| = | A|.

Because B is countable, B \ A is also countable. As we proved on Problem Set 7, A has
a countably infinite subset C. The union of countable sets is countable so C'U (B \ A) is
countably infinite. Since |C| = |C' U (B \ A)|, there exists a bijection f : C' — C U (B \ A).

Define g: A — AU B by
flx) ifzxedC
g(x) = ) . :
x ife ¢ C
g bijectively maps A\ C to itself since it is the identity function here, and bijectively maps C'

to CU(B\ A) using f. Since A is the disjoint union of A\ C' and C, and AU B is the disjoint
union of A\ C and C' U (B \ A), g is a bijection.

8. Prove for each pair of groups that they are not isomorphic.

(a) (Z/5Z,+) and (Z/6Z,+)
(Z/5Z,+) has order 5 but (Z/6Z,+) has order 6 so they are not isomorphic.
(b) The symmetry group of a square and (Z/8Z, +).

The symmetry group of a square is not abelian but (Z/8Z, +) is abelian so they are not
isomorphic. Alternatively, since (Z/8Z, +) is cyclic, it has at least one element of order 8
(actually four of them), but the symmetry group of the square has no elements of order

8.

(c) (Z,+) and (Q\ {0}, ).
(Z,+) is cyclic, because it is generated by 1. Suppose (Q \ {0},-) is cyclic, so it has a
generator a/b where a and b are nonzero integers. Then

(a/b) ={...,(a/b)"% (a/b) ", 1, (a/b)", (a/b)*,...} = Q\ {O}.

Let p be a prime that appears neither in the prime factorizations of a nor b. Since
p € Q\ {0}, p=(a/b)" for some n € Z. If n > 0 then a™ = pb™ implies that p divides b.
If n < 0 then b= = pa™" implies that p divides a. If n = 0 then p = 1. None of these
conclusions are true, which is a contradiction. Therefore (Q \ {0}, -) is not cyclic.

9. Prove that (P(Z),A) is a group where A denotes the symmetric difference operation defined
as AAB=(A\B)U(B\A).

Associativity: For A, B,C € P(Z), we can show that (A A B) A C' is the set of integers that
appear in exactly one of A, B, C' or in all three,

(AAB)AC = (A\ (BUC))U(B\ (AUC))U(C\(AUB)U(ANBNC).



10.

11.

12.

13.

14.

This is symmetric in all three sets, so it’s equal to AA (B A C).
Identity: The identity element is () because

AAD=(A\D)U D\ A)=AUD=A4,
and similarly for ) A A.

Inverses: The inverse of A is A because

AAA=(A\A)UA\A) =0Upd=0.

Write the Cayley table for (Z/5Z,+).

+10 1 2 3 4
0/0 1 2 3 1
I1/1T 2 3 170
212 3 401
313 401 2
414 0 1 2 3

Find the order of each element of (Z/8Z,+).

e 0 has order 1,
e 1 has order 8,
e 2 has order 4,
e 3 has order 8,
e 4 has order 2,
e 5 has order 8,
e 6 has order 4,
e 7 has order 8.

Prove that the set {(z,z) | # € R} is a subgroup of (R?, +).

Suppose a,b € H = {(z,z) | x € R}. Then a = (z,x) and b = (y,y) for some x,y € R. Then
a—b=(x—y,z—vy), which is in H. Therefore H is a subgroup.

Let f : G — H be a group homomorphism and let K be a subgroup of G. Prove that
{f(k) | k € K} is a sugroup of H.

Let L ={f(k)| k € K}. Suppose a,b € L so a = f(z) and b = f(y) for some z,y € K. Since
K is a subgroup, y~! € K, and then xy~' € K, so f(xy~!) € L. Using the fact that f is a
homomorphism,

flay™) =f@) fly™) =f@)fly) " =ab".

Since ab~! € L, L is a subgroup.

Let R be a ring with multiplicative indentity 1. For any a € R prove that (—1) - a = —a.

We want to show that (—1)-a is the additive inverse of a. Since 1 is the multiplicative identity,
we have 1-a =a-1=a. Then

(-)-a+a=(-1)-a+1l-a=(-14+1)-a=0-a=0,
which proves that (—1) - a = —a.



