MATH 108 Winter 2019: Intro to Abstract Math

Final topics

Chapters 1-3 (see midterm topics list)

Functions (Sec 4.1-4.4)

- Definition of a function
- Domain, codomain, image
- Identity functions, restrictions, inclusion maps
- Function composition
- Injectivity
- Surjectivity
- Left- and right-inverses
- Bijectivity
- (Two-way) inverses

Cardinality (Sec 5.1-5.5)

- Definition of |A| = |B|
- Finite cardinalities
- Countably infinite cardinality, \aleph_0 (and Hilbert's Hotel)
- Cantor's diagonalization argument
- Cardinality of the continuum, c
- Cantor's Theorem
- Cantor-Schröder-Bernstein Theorem (proving |A| = |B| with injections)
- Axiom of Choice
- Comparability of cardinal numbers

Algebra (Sec 6.1-6.5)

- Binary operations
- Definition of a group and of an abelian group
- Common examples of groups: $(\mathbb{Z}, +)$, $(\mathbb{Q} \setminus \{0\}, \cdot)$, $(\mathbb{Z}/m\mathbb{Z}, +)$, \mathfrak{S}_n , symmetry groups, etc.
- Cayley tables
- Subgroups
- Generators
- Order of a group, order of an element
- Group homomorphisms
- Isomorphism of groups
- Definition of a ring and a field
- Ring homomorphisms

Practice Problems

- 1. Let $f:A\to C$ and $g:B\to D$ be functions and let $h:A\times B\to C\times D$ be defined by h(a,b)=(f(a),g(b)).
 - (a) Prove that if f and g are injective then h is injective.
 - (b) Prove that if f and g are surjective then h is surjective.
- 2. Determine if each function is injective and if it is surjective.
 - (a) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3$.
 - (b) $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = |x|.
 - (c) $f: \mathbb{R}^2 \to \mathbb{R}$ defined by f(x, y) = x y.
 - (d) $f: \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$ defined by $f(\overline{x}) = \overline{2x+1}$.
- 3. Find a right-inverse for the quotient map $q: \mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$ defined by $q(x) = \overline{x}$.
- 4. Prove that there exists a bijective function $f: \mathbb{R} \to \mathbb{R}^2$.
- 5. Find the cardinality of each set and prove your answer.
 - (a) $\mathcal{P}(\mathbb{Z} \times \{1, 2, 3\})$.
 - (b) $\mathbb{Q} \cap [0, 1]$.
 - (c) The symmetric group on four elements, \mathfrak{S}_4 .
- 6. Let A be the set of functions from \mathbb{R} to \mathbb{Z} . Prove that A is uncountable.
- 7. Prove that if A is an infinite set and B is a countably infinite set, then $|A \cup B| = |A|$.
- 8. Prove for each pair of groups that they are not isomorphic.
 - (a) $(\mathbb{Z}/5\mathbb{Z}, +)$ and $(\mathbb{Z}/6\mathbb{Z}, +)$
 - (b) The symmetry group of a square and $(\mathbb{Z}/8\mathbb{Z}, +)$.
 - (c) $(\mathbb{Z}, +)$ and $(\mathbb{Q} \setminus \{0\}, \cdot)$.
- 9. Prove that $(\mathcal{P}(\mathbb{Z}), \Delta)$ is a group where Δ denotes the symmetric difference operation defined as $A\Delta B = (A \setminus B) \cup (B \setminus A)$.
- 10. Write the Cayley table for $(\mathbb{Z}/5\mathbb{Z}, +)$.
- 11. Find the order of each element of $(\mathbb{Z}/8\mathbb{Z}, +)$.
- 12. Prove that the set $\{(x,x) \mid x \in \mathbb{R}\}$ is a subgroup of $(\mathbb{R}^2, +)$.
- 13. Let $f: G \to H$ be a group homomorphism and let K be a subgroup of G. Prove that $\{f(k) \mid k \in K\}$ is a sugroup of H.
- 14. Let R be a ring with multiplicative indentity 1. For any $a \in R$ prove that $(-1) \cdot a = -a$.