MATH 108 Winter 2019: Intro to Abstract Math

Midterm topics

Logic and Proofs (Sec 1.1-1.6)

- Propositions
- Logical connectives $(\sim, \vee, \wedge, \Rightarrow, \Leftrightarrow)$
- Truth tables, tautologies, contradictions
- Contrapositive and converse
- Quantifiers $(\forall, \exists, \exists!)$
- Direct proofs (for conditionals)
- Proofs by contraposition (for conditionals)
- Proofs by contradiction
- Two-way proofs (for biconditionals)
- Proofs by cases

Sets and Induction (Sec 2.1-2.5)

- Set operations $(\cup, \cap, \setminus, \times, \mathcal{P})$
- Big union and big intersection (\bigcup, \bigcap)
- Proofs of $A \subseteq B$
- Cardinality (size) of sets
- "Weak" induction proofs (with one or multiple base cases)
- "Strong" induction proofs
- Well-Ordering Principle of \mathbb{N}_0
- Euclid's Lemma
- Bézout's Identity
- Fundamental Theorem of Arithmetic

Relations and Partitions (Sec 3.1-3.5)

- Properties of relations (reflexive, irreflexive, symmetric, antisymmetric, transitive)
- Directed graphs
- Equivalence relations
- Equivalence classes, quotients, quotient maps
- Partitions
- Modular arithmetic
- Partial orders
- Hasse diagrams
- Least upper bounds and greatest lower bounds

Practice Problems

- 1. (a) Write the truth table for the propositional form $(P \Rightarrow Q) \lor (Q \Rightarrow P)$.
 - (b) Is $(P \Rightarrow Q) \lor (Q \Rightarrow P)$ a tautology, a contradiction, or neither?
- 2. Let P be the proposition $(\forall x)(\forall y)((x+y\notin\mathbb{Z})\Rightarrow (x\notin\mathbb{Z}\vee y\notin\mathbb{Z}))$ with universe \mathbb{R} .
 - (a) Write P in English.
 - (b) Write the contrapositive of P.
 - (c) Prove P by contraposition.
- 3. Let P be the proposition "For all integers n, n is odd or n+1 is odd."
 - (a) Write the negation of P.
 - (b) Prove P by contradiction.
- 4. For positive integers a, b, c, prove that ac divides bc if and only if a divides b.
- 5. For sets A, B, C, prove that $(A \setminus B) \setminus C = (A \setminus C) \setminus (B \setminus C)$.
- 6. Give an example of sets A, B, C with $A \setminus C \subseteq B \setminus C$ but $A \not\subseteq B$.
- 7. Prove by induction that $n! \geq 2^{n-1}$ for all positive integers n.
- 8. Prove by induction that using 2 cent stamps and 5 cent stamps, one can make n cents worth of postage for all $n \ge 4$.
- 9. Let \sim be the relation on \mathbb{Z} defined by $x \sim y$ if and only if $|x y| \leq 1$. Which of the following properties does \sim have: reflexive, irreflexive, symmetric, antisymmetric, transitive?
- 10. Let \sim be the relation on \mathbb{R} defined by $x \sim y$ if and only if $\sin x = \sin y$.
 - (a) Prove that \sim is an equivalence relation.
 - (b) Describe the equivalence class of 0.
- 11. Prove with modular arithmetic that the last digit of 9^n is 1 or 9 for all positive integers n.
- 12. Define relation \leq on \mathbb{Z}^2 by $(a,b) \leq (c,d)$ if and only if $a \leq c$ and $b \leq d$.
 - (a) Prove that \leq is a partial order.
 - (b) Find the greatest lower bound of $\{(1,5),(3,3)\}$.
 - (c) Is \leq a total order?