due January 17

1. Write the operation table for the union operation \cup on $\mathcal{P}(\{1,2\})$ (the set of all subsets of $\{1,2\}$).

\cup	Ø	$\{1\}$	$\{2\}$	$\{1, 2\}$
Ø	Ø	$\{1\}$	$\{2\}$	$\{1, 2\}$
{1}	{1}	$\{1\}$	$\{1, 2\}$	$\{1, 2\}$
$\{2\}$	$\{2\}$	$\{1, 2\}$	$\{2\}$	$\{1, 2\}$
$\{1, 2\}$	$\{1, 2\}$	$\{1, 2\}$	$\{1, 2\}$	$\{1, 2\}$

- 2. Determine whether each set and binary operation is a group. If no, which properties does it fail? If yes, is it abelian? Find an identity element if one exists.
 - (a) (The set of positive integers, +).Not a group. It doesn't have an identity element or inverses.
 - (b) $(\mathbb{C} \setminus \{0\}, \cdot).$

Group. 1 is an identity element.

- (c) (P({1,2}), ∪).
 Not a group. The non-empty sets don't have inverses. Ø is an identity element.
- (d) (The set of functions Z → Z, composition).
 Not a group. The functions that are not bijective don't have inverses. The identity function is an identity element.
- (e) (The set of bijective functions $\mathbb{Z} \to \mathbb{Z}$, composition). Group. The identity function is an identity element.

3. (2.1.2) Prove the following properties of inverses.

(a) If an element a has a left-inverse ℓ and a right-inverse r, i.e. $\ell a = 1$ and ar = 1, then $\ell = r$, a is invertible and r is its inverse.

$$\ell = \ell(ar) = (\ell a)r = r.$$

Since $\ell = r, r$ is both a left and right-inverse of a, so a is invertible.

(b) If a is invertible, its inverse is unique. Let b_1 and b_2 be inverses of a. Then

$$b_1 = b_1(ab_2) = (b_1a)b_2 = b_2.$$

Therefore the inverse of a is unique.

(c) If a and b are invertible, then so is ab and its inverse is $b^{-1}a^{-1}$.

$$(b^{-1}a^{-1})(ab) = b^{-1}a^{-1}ab = b^{-1}b = 1.$$

 $(ab)(b^{-1}a^{-1}) = abb^{-1}a^{-1} = aa^{-1} = 1.$

Therefore $b^{-1}a^{-1}$ is the inverse of ab.

4. (2.2.2) Let S be a set with a binary operation that is associative and has an identity element. Prove that the subset consisting of the invertible elements in S is a group.

Let * be the operation on S and let

 $T = \{ x \in S \mid \exists y \in S \text{ such that } y \text{ is an inverse of } x \}.$

To prove that T is a group, we need to show that T is closed under the operation *, that * is associative on T, that the identity element of * is in T, and that for each $x \in T$ the inverse of x is also in T.

By Problem 3c, if a and b are invertible, then so is a * b. Therefore if $a, b \in T$, then $a * b \in T$, so T is closed under *.

Since * is associative on S, it is also associative on a subset $T \subseteq S$.

The identity element e of * is invertible because e is the inverse of e, so $e \in T$.

If $x \in T$, then it has an inverse $y \in S$. Then x is also an inverse of y, so $y \in T$. Therefore every element of T has an inverse in T.

T satisfies all of the properties needed to be a group.

- 5. (2.2.3) Let x, y, z, w be elements of a group G.
 - (a) Solve for y if $xyz^{-1}w = 1$.

Multiply both sides of the equation on the left by x^{-1}

$$x^{-1}xyz^{-1}w = x^{-1}1,$$

 $yz^{-1}w = x^{-1}.$

Then multiply both sides of the equation on the right by $w^{-1}z$

$$yz^{-1}ww^{-1}z = x^{-1}w^{-1}z,$$

 $y = x^{-1}w^{-1}z.$

(b) Suppose that xyz = 1. Does it follow that yzx = 1? Does it follow that yxz = 1? The answer to the first question is yes. Multiply both sides of the equation on the left by x^{-1} and on the right by x

$$x^{-1}xyzx = x^{-1}1x$$
$$yzx = 1.$$

However it does not follow that yxz = 1. To construct a counterexample, choose G to be your favorite non-abelian group and choose x and y to be elements that don't commute: $xy \neq yx$. Then let $z = (xy)^{-1}$. It follows that $z \neq (yx)^{-1}$ because z can only have one inverse. Then xyz = 1, but $yxz \neq 1$.

6. The Klein four group V is the group with 4 elements that can be represented by matrices

$$\begin{bmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{bmatrix}.$$

(a) Find the order of each element of V.

The identity matrix has order 1, and the other three elements have order 2.

- (b) Find all subgroups of V.
 - $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ • $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ • $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\}$ • $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}$ • $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}$
- 7. (2.2.4) In which of the following cases is H a subgroup of G? If not, say why not.
 - (a) $G = \operatorname{GL}_n(\mathbb{C})$ and $H = \operatorname{GL}_n(\mathbb{R})$. ($\operatorname{GL}_n(K)$ denotes the multiplicative group of invertible $n \times n$ matrices with entries in K.) Subgroup.
 - (b) $G = \mathbb{R}^{\times}$ and $H = \{-1, 1\}$. Subgroup.
 - (c) $G = (\mathbb{Z}, +)$ and H is the set of positive integers. Not a subgroup. H does not have the identity element nor inverses.
 - (d) $G = \mathbb{R}^{\times}$ and H is the set of positive reals. Subgroup.

(e) $G = \operatorname{GL}_2(\mathbb{R})$ and H is the of matrices $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$, with $a \neq 0$.

Not a subgroup. H is a group, but $H \not\subseteq G$ because the elements of H are not invertible matrices.