MATH 150A Winter 2020 - Problem Set 2

due January 24

- (a) Characterize the elements of C[×] that have order n for positive integer n.
 (b) Characterize the elements of C[×] that have order ∞.
- 2. (2.4.3) Let a and b be elements of a group G. Prove that ab and ba have the same order.
- 3. (2.4.10) Show by example that the product of elements of finite order in a group need not have finite order. What if the group is abelian?
- 4. (2.5.2) Let H and K be subgroups of group G.
 - (a) Prove that the intersection $K \cap H$ is a subgroup of H.
 - (b) Prove that if K is a normal subgroup of G, then $K \cap H$ is a normal subgroup of H.
- 5. (a) Find an injective homomorphism from the symmetric group S_3 to $GL_3(\mathbb{R})$.
 - (b) Let C_8 denote the cyclic group of order 8. Find an injective homomorphism from C_8 to $\operatorname{GL}_2(\mathbb{R})$.
- 6. (2.5.4) Let $f : \mathbb{R}^+ \to \mathbb{C}^{\times}$ be the map defined by $f(x) = e^{ix}$. Prove that f is a homomorphism, and determine its kernel and image.
- 7. Let D_5 denote the *dihedral group of the pentagon*, which is the group of order 10 consisting of the symmetries of a regular pentagon in the plane. D_5 is generated by r and s which represent a counter-clockwise rotation of the pentagon by $2\pi/5$ radians, and a reflection, respectively. Find all subgroups of D_5 and determine which subgroups are normal.
- 8. (a) Prove that if $f : \mathbb{Q}^+ \to \mathbb{Q}^+$ is a group homomorphism, then f(x) = cx for some constant c.
 - (b) Let V and W be vector spaces over \mathbb{Q} and $T: V \to W$ a function. Prove that T is a group homomorphism between (V, +) and (W, +) if and only if T is a linear map.
 - (c) Is the property in part (a) true for $f : \mathbb{C}^+ \to \mathbb{C}^+$?
 - (d) Is the property in part (a) true for $f : \mathbb{R}^+ \to \mathbb{R}^+$?