MATH 150A Winter 2020 - Problem Set 2 solutions

due January 24

- 1. (a) Characterize the elements of \mathbb{C}^{\times} that have order *n* for positive integer *n*. The elements of order *n* are $e^{2\pi i \frac{a}{n}}$ where *a* is an integer with gcd(a, n) = 1.
 - (b) Characterize the elements of C[×] that have order ∞. The elements of order ∞ are all of the elements z not of the above form for any n. So either |z| ≠ 1 or z = e^{2πir} for r an irrational number.
- 2. (2.4.3) Let a and b be elements of a group G. Prove that ab and ba have the same order. Suppose that $(ab)^n = 1$ for some positive integer n. Multiply both sides of the equation by a^{-1} on the left and by a on the right

$$a^{-1}(abab\cdots ab)a = a^{-1}1a,$$
$$bab\cdots aba = 1,$$
$$(ba)^{n} = 1.$$

Conversely, suppose $(ba)^n = 1$. Multiplying both sides of the equation by b^{-1} on the left and by b on the right gives $(ab)^n = 1$. Therefore $(ab)^n = 1$ if and only if $(ba)^n = 1$. If the order of ab is finite, it is the smallest positive integer n such that $(ab)^n = 1$, which is also the smallest positive integer n such that $(ba)^n = 1$. If the order of ab is ∞ , then $(ab)^n \neq 1$ for all postive integers n, and the same is true for $(ba)^n$ so ba also has order ∞ .

3. (2.4.10) Show by example that the product of elements of finite order in a group need not have finite order. What if the group is abelian?

There are various sources of examples, but one comes from the permutation group of \mathbb{Z} , which is the group of invertible functions $\mathbb{Z} \to \mathbb{Z}$.

Let $f : \mathbb{Z} \to \mathbb{Z}$ be the function that swaps each even integer with the following odd integer, so f(2a) = 2a + 1 and f(2a + 1) = 2a for all $a \in \mathbb{Z}$. Let $g : \mathbb{Z} \to \mathbb{Z}$ be the function that swaps each even integer with the previous odd integer, so g(2a) = 2a - 1and g(2a-1) = 2a for all $a \in \mathbb{Z}$. It is easy to see that both f and g have order 2, meaning that both $f \circ f$ and $g \circ g$ are equal to the identity function, since they consist of swaps.

The composition $g \circ f : \mathbb{Z} \to \mathbb{Z}$ is the function defined by $g \circ f(2a) = 2a + 2$ and $g \circ f(2a+1) = 2a - 1$ for all $a \in \mathbb{Z}$. This function has infinite order since $(g \circ f)^n(2a) = 2a + 2n$ which is not equal to 2a for any positive integer n.

If the group is abelian, then the product of elements of finite order must also have finite order. Suppose x has order n and y has order m. Then

$$(xy)^{nm} = x^{nm}y^{nm} = (x^n)^m (y^m)^n = 1^m 1^n = 1$$

so xy has finite order.

- 4. (2.5.2) Let H and K be subgroups of group G.
 - (a) Prove that the intersection $K \cap H$ is a subgroup of H. Suppose $a, b \in K \cap H$. Since K and H are subgroups, $ab^{-1} \in K$ and $ab^{-1} \in H$, so $ab^{-1} \in K \cap H$. Therefore $K \cap H$ is a subgroup.
 - (b) Prove that if K is a normal subgroup of G, then $K \cap H$ is a normal subgroup of H. Suppose that K is a normal subgroup, so for all $k \in K$ and $g \in G$, $gkg^{-1} \in K$. Then for all $k \in K \cap H$ and $g \in H$, $gkg^{-1} \in K$. Since k, g, g^{-1} are all in H, $gkg^{-1} \in H$, so $gkg^{-1} \in K \cap H$. Therefore $K \cap H$ is a normal subgroup of H.
- 5. (a) Find an injective homomorphism from the symmetric group S_3 to $GL_3(\mathbb{R})$. Let e_1, e_2, e_3 denote the standard basis vectors of \mathbb{R}^3 . Each permutation $\sigma : \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ can be mapped to the linear transformation T_{σ} that permutes the standard basis vectors according to σ , so $T_{\sigma}(e_i) = e_{\sigma(i)}$. The matrix representation of T_{σ} is called a permutation matrix. For S_3 , the permutation matrices are

[1	0	0		Γ1	0	0		0	1	0		0	1	0		0	0	1]		0	0	1]
0	1	0	,	0	0	1	,	1	0	0	,	0	0	1	,	1	0	0	,	0	1	0
0	0	1		0	1	0		0	0	1		1	0	1		0	1	0		1	0	0

(b) Let C_8 denote the cyclic group of order 8. Find an injective homomorphism from C_8 to $\operatorname{GL}_2(\mathbb{R})$.

The cyclic group can be mapped to rotations of \mathbb{R}^2 , with the generator x of C_8 sent to one eighth of a full turn. This map is $f: C_8 \to \mathrm{GL}_2(\mathbb{R})$ with

$$f(x^k) = \begin{bmatrix} \cos(k\pi/4) & -\sin(k\pi/4) \\ \sin(k\pi/4) & \cos(k\pi/4) \end{bmatrix}.$$

6. (2.5.4) Let $f : \mathbb{R}^+ \to \mathbb{C}^{\times}$ be the map defined by $f(x) = e^{ix}$. Prove that f is a homomorphism, and determine its kernel and image.

For all $x, y \in \mathbb{R}$,

$$f(x+y) = e^{i(x+y)} = e^{ix}x^{iy} = f(x)f(y)$$

Therefore f is a group homomorphism. The image of f is the complex unit circle

$$im(f) = \{ z \in \mathbb{C} \mid |z| = 1 \}.$$

The kernel is the set of real numbers x such that $e^{ix} = 1$, which is

$$\ker(f) = \{2\pi n \mid n \in \mathbb{Z}\} = 2\pi \mathbb{Z}.$$

7. Let D_5 denote the *dihedral group of the pentagon*, which is the group of order 10 consisting of the symmetries of a regular pentagon in the plane. D_5 is generated by r and s which represent a counter-clockwise rotation of the pentagon by $2\pi/5$ radians, and a reflection, respectively. Find all subgroups of D_5 and determine which subgroups are normal.

The elements of D_5 can be represented in terms of generators as $1, r, r^2, r^3, r^4, s, rs, r^2s, r^3s, r^4s$. Then the subgroups of D_5 are

- {1}
- $\{1, s\}$
- $\{1, rs\}$
- $\{1, r^2s\}$
- $\{1, r^3s\}$
- $\{1, r^4s\}$
- $\{1, r, r^2, r^3, r^4\}$
- $\{1, r, r^2, r^3, r^4, s, rs, r^2s, r^3s, r^4s\}$

The normal subgroups are

- {1}
- $\{1, r, r^2, r^3, r^4\}$
- $\{1, r, r^2, r^3, r^4, s, rs, r^2s, r^3s, r^4s\}$
- 8. (a) Prove that if $f : \mathbb{Q}^+ \to \mathbb{Q}^+$ is a group homomorphism, then f(x) = cx for some constant c.

Any $x, y \in \mathbb{Q}$ can each be expressed as a fraction of integers, and in particular we can express them as fractions with a common denominator, x = a/n and y = b/n. Let c = nf(1/n), so that f(1/n) = c/n. If $a \ge 0$ then

$$f(x) = f(\underbrace{1/n + \dots + 1/n}_{a \text{ times}}) = \underbrace{f(1/n) + \dots + f(1/n)}_{a \text{ times}} = ac/n = cx$$

and if a < 0 then

$$f(x) = f(\underbrace{-1/n - \dots - 1/n}_{-a \text{ times}}) = \underbrace{-f(1/n) - \dots - f(1/n)}_{-a \text{ times}} = ac/n = cx.$$

By the same argument, f(y) = cy. Since every pair of inputs is scaled by the same constant, it must be that f(x) = cx for all $x \in \mathbb{Q}$.

(b) Let V and W be vector spaces over \mathbb{Q} and $T: V \to W$ a function. Prove that T is a group homomorphism between (V, +) and (W, +) if and only if T is a linear map. If $T: V \to W$ is a linear map then it satisifies T(x+y) = T(x) + T(y) for all $x, y \in V$ and T(kx) = kT(x) for all $k \in \mathbb{Q}$ and $x \in V$. The first property implies that T is a group homoromphism from (V, +) to (W, +).

If $T: V \to W$ is a homomorphism between the additive groups, then T(x+y) = T(x) + T(y) for all $x, y \in V$. Let $k \in \mathbb{Q}$ and $x \in V$, so k = a/b for some integers a, b with b > 0. Let z = (1/b)x so x = bz and kx = az. Then if $b \ge 0$,

$$T(x) = T(\underbrace{z + \dots + z}_{b \text{ times}}) = bT(z)$$

or if b < 0,

$$T(x) = T(\underbrace{-z - \dots - z}_{-b \text{ times}}) = -bT(-z) = bT(z).$$

Similarly

$$T(kx) = T(\underbrace{z + \dots + z}_{a \text{ times}}) = aT(z).$$

Therefore T(kx) = (a/b)T(x) = kT(x). This proves that T is a linear map.

- (c) Is the property in part (a) true for $f : \mathbb{C}^+ \to \mathbb{C}^+$? No. Consider the map $f(z) = \operatorname{Re}(z)$ that outputs the real part of a complex number z. This is an additive group homomorphism since $\operatorname{Re}(z + w) = \operatorname{Re}(z) + \operatorname{Re}(w)$. However $\operatorname{Re}(1) = 1 \cdot 1$ while $\operatorname{Re}(i) = 0 \cdot i$ so 1 and i are not scaled by the same value.
- (d) Is the property in part (a) true for $f : \mathbb{R}^+ \to \mathbb{R}^+$?

No. \mathbb{R} contains \mathbb{Q} as a subfield, so \mathbb{R} is a vector space over \mathbb{Q} . Every vector space has a basis, so there exists a basis B for \mathbb{R} as a \mathbb{Q} -vector space (although constructing such a basis concretely is essentially impossible). As a counterexample to the property in (a), consider \mathbb{Q} -linear map $f : \mathbb{R} \to \mathbb{R}$ that scales the different basis elements of B by different amounts. Since the map is linear, it satisfies the property that f(x + y) = f(x) + f(y) for all $x, y \in \mathbb{R}$, so f is an additive group homomorphism, but it doesn't scale all the elements of \mathbb{R} by the same amount.