
MATH 150A Winter 2020 - Problem Set 2 solutions

due January 24

1. (a) Characterize the elements of C× that have order n for positive integer n.

The elements of order n are e2πi
a
n where a is an integer with gcd(a, n) = 1.

(b) Characterize the elements of C× that have order ∞.

The elements of order ∞ are all of the elements z not of the above form for any n.
So either |z| 6= 1 or z = e2πir for r an irrational number.

2. (2.4.3) Let a and b be elements of a group G. Prove that ab and ba have the same order.

Suppose that (ab)n = 1 for some positive integer n. Multiply both sides of the equation
by a−1 on the left and by a on the right

a−1(abab · · · ab)a = a−11a,

bab · · · aba = 1,

(ba)n = 1.

Conversely, suppose (ba)n = 1. Multiplying both sides of the equation by b−1 on the left
and by b on the right gives (ab)n = 1. Therefore (ab)n = 1 if and only if (ba)n = 1. If
the order of ab is finite, it is the smallest positive integer n such that (ab)n = 1, which
is also the smallest positive integer n such that (ba)n = 1. If the order of ab is ∞, then
(ab)n 6= 1 for all postive integers n, and the same is true for (ba)n so ba also has order∞.

3. (2.4.10) Show by example that the product of elements of finite order in a group need not
have finite order. What if the group is abelian?

There are various sources of examples, but one comes from the permutation group of Z,
which is the group of invertible functions Z→ Z.

Let f : Z → Z be the function that swaps each even integer with the following odd
integer, so f(2a) = 2a + 1 and f(2a + 1) = 2a for all a ∈ Z. Let g : Z → Z be the
function that swaps each even integer with the previous odd integer, so g(2a) = 2a − 1
and g(2a−1) = 2a for all a ∈ Z. It is easy to see that both f and g have order 2, meaning
that both f ◦ f and g ◦ g are equal to the identity function, since they consist of swaps.

The composition g ◦ f : Z → Z is the function defined by g ◦ f(2a) = 2a + 2 and
g ◦ f(2a+ 1) = 2a− 1 for all a ∈ Z. This function has infinite order since (g ◦ f)n(2a) =
2a+ 2n which is not equal to 2a for any positive integer n.

If the group is abelian, then the product of elements of finite order must also have finite
order. Suppose x has order n and y has order m. Then

(xy)nm = xnmynm = (xn)m(ym)n = 1m1n = 1

so xy has finite order.



4. (2.5.2) Let H and K be subgroups of group G.

(a) Prove that the intersection K ∩H is a subgroup of H.

Suppose a, b ∈ K ∩H. Since K and H are subgroups, ab−1 ∈ K and ab−1 ∈ H, so
ab−1 ∈ K ∩H. Therefore K ∩H is a subgroup.

(b) Prove that if K is a normal subgroup of G, then K ∩H is a normal subgroup of H.

Suppose that K is a normal subgroup, so for all k ∈ K and g ∈ G, gkg−1 ∈ K. Then
for all k ∈ K ∩H and g ∈ H, gkg−1 ∈ K. Since k, g, g−1 are all in H, gkg−1 ∈ H,
so gkg−1 ∈ K ∩H. Therefore K ∩H is a normal subgroup of H.

5. (a) Find an injective homomorphism from the symmetric group S3 to GL3(R).

Let e1, e2, e3 denote the standard basis vectors of R3. Each permutation σ : {1, 2, 3} →
{1, 2, 3} can be mapped to the linear transformation Tσ that permutes the standard
basis vectors according to σ, so Tσ(ei) = eσ(i). The matrix representation of Tσ is
called a permutation matrix. For S3, the permutation matrices are1 0 0

0 1 0
0 0 1

 ,
1 0 0

0 0 1
0 1 0

 ,
0 1 0

1 0 0
0 0 1

 ,
0 1 0

0 0 1
1 0 1

 ,
0 0 1

1 0 0
0 1 0

 ,
0 0 1

0 1 0
1 0 0

 .
(b) Let C8 denote the cyclic group of order 8. Find an injective homomorphism from C8

to GL2(R).

The cyclic group can be mapped to rotations of R2, with the generator x of C8 sent
to one eighth of a full turn. This map is f : C8 → GL2(R) with

f(xk) =

[
cos(kπ/4) − sin(kπ/4)
sin(kπ/4) cos(kπ/4)

]
.

6. (2.5.4) Let f : R+ → C× be the map defined by f(x) = eix. Prove that f is a homomor-
phism, and determine its kernel and image.

For all x, y ∈ R,
f(x+ y) = ei(x+y) = eixxiy = f(x)f(y).

Therefore f is a group homomorphism. The image of f is the complex unit circle

im(f) = {z ∈ C | |z| = 1}.

The kernel is the set of real numbers x such that eix = 1, which is

ker(f) = {2πn | n ∈ Z} = 2πZ.

7. Let D5 denote the dihedral group of the pentagon, which is the group of order 10 consisting
of the symmetries of a regular pentagon in the plane. D5 is generated by r and s which
represent a counter-clockwise rotation of the pentagon by 2π/5 radians, and a reflection,
respectively. Find all subgroups of D5 and determine which subgroups are normal.

The elements ofD5 can be represented in terms of generators as 1, r, r2, r3, r4, s, rs, r2s, r3s, r4s.
Then the subgroups of D5 are



• {1}
• {1, s}
• {1, rs}
• {1, r2s}
• {1, r3s}
• {1, r4s}
• {1, r, r2, r3, r4}
• {1, r, r2, r3, r4, s, rs, r2s, r3s, r4s}

The normal subgroups are

• {1}
• {1, r, r2, r3, r4}
• {1, r, r2, r3, r4, s, rs, r2s, r3s, r4s}

8. (a) Prove that if f : Q+ → Q+ is a group homomorphism, then f(x) = cx for some
constant c.

Any x, y ∈ Q can each be expressed as a fraction of integers, and in particular we
can express them as fractions with a common denominator, x = a/n and y = b/n.
Let c = nf(1/n), so that f(1/n) = c/n. If a ≥ 0 then

f(x) = f(1/n+ · · ·+ 1/n︸ ︷︷ ︸
a times

) = f(1/n) + · · ·+ f(1/n)︸ ︷︷ ︸
a times

= ac/n = cx

and if a < 0 then

f(x) = f(−1/n− · · · − 1/n︸ ︷︷ ︸
−a times

) = −f(1/n)− · · · − f(1/n)︸ ︷︷ ︸
−a times

= ac/n = cx.

By the same argument, f(y) = cy. Since every pair of inputs is scaled by the same
constant, it must be that f(x) = cx for all x ∈ Q.

(b) Let V and W be vector spaces over Q and T : V → W a function. Prove that T is
a group homomorphism between (V,+) and (W,+) if and only if T is a linear map.

If T : V → W is a linear map then it satisifies T (x+y) = T (x)+T (y) for all x, y ∈ V
and T (kx) = kT (x) for all k ∈ Q and x ∈ V . The first property implies that T is a
group homoromphism from (V,+) to (W,+).

If T : V → W is a homomorphism between the additive groups, then T (x + y) =
T (x) + T (y) for all x, y ∈ V . Let k ∈ Q and x ∈ V , so k = a/b for some integers a, b
with b > 0. Let z = (1/b)x so x = bz and kx = az. Then if b ≥ 0,

T (x) = T (z + · · ·+ z︸ ︷︷ ︸
b times

) = bT (z)



or if b < 0,
T (x) = T (−z − · · · − z︸ ︷︷ ︸

−b times

) = −bT (−z) = bT (z).

Similarly
T (kx) = T (z + · · ·+ z︸ ︷︷ ︸

a times

) = aT (z).

Therefore T (kx) = (a/b)T (x) = kT (x). This proves that T is a linear map.

(c) Is the property in part (a) true for f : C+ → C+?

No. Consider the map f(z) = Re(z) that outputs the real part of a complex number
z. This is an additive group homomorphism since Re(z + w) = Re(z) + Re(w).
However Re(1) = 1 · 1 while Re(i) = 0 · i so 1 and i are not scaled by the same value.

(d) Is the property in part (a) true for f : R+ → R+?

No. R contains Q as a subfield, so R is a vector space over Q. Every vector space has
a basis, so there exists a basisB for R as a Q-vector space (although constructing such
a basis concretely is essentially impossible). As a counterexample to the property
in (a), consider Q-linear map f : R → R that scales the different basis elements
of B by different amounts. Since the map is linear, it satisfies the property that
f(x + y) = f(x) + f(y) for all x, y ∈ R, so f is an additive group homomorphism,
but it doesn’t scale all the elements of R by the same amount.


