
MATH 150A Winter 2020 - Problem Set 3 solutions

due January 31

1. Let G be a group generated by set A. Prove that if a and b commute for all a, b ∈ A,
then G is abelian.

First note that ab = ba implies ba−1 = a−1b. Let B be the set of inverses of the elements
in A. Then all of the elements in A ∪B commute with each other.

Since A generates G, for any g, h ∈ G, g and h can be expressed as

g = a1a2 · · · ak,

h = b1b2 · · · b`,
with a1, . . . , ak, b1, . . . , b` ∈ A ∪B. Since each ai commutes with each bj, we have

gh = a1 · · · akb1 · · · b` = b1 · · · b`a1 · · · ak = hg.

So G is abelian.

2. Prove that if group G has order 4 then G is cyclic or G is isomorphic to the Klein four
group.

Let G = {e, a, b, c} with e the identity. The elements of G can have order 1, 2 or 4.
If G has any elements of order 4, it is cyclic. Otherwise, a, b, c each have order 2, so
a2 = b2 = c2 = e. Now consider the product ab. Since a and b are not the identity, ab
cannot be equal to a or b. And since aa = e, ab 6= e. The only possible value then is
ab = c. Similarly, we get ba = c, ac = ca = b and bc = cb = a. Therefore all values of the
operation table are determined, so there is only one isomorphism class for groups with
order 4 that are not cyclic. The Klein four group also has order 4 and is not cyclic, so it
must be isomorphic to G.

3. For group G, Aut(G) denotes the automorphism group of G, whose elements are all
automorphisms G→ G and with composition as the operation.

(a) Prove that Aut(G) is in fact a group.

The composition of two isomorphisms is an isomorphism, so Aut(G) is closed under
the operation. Function composition is associative, and the identity function idG :
G→ G is in Aut(G) so Aut(G) has an identity element. For any automorphism ϕ,
we proved that ϕ−1 is also an isomorphism, so ϕ−1 ∈ Aut(G). Therefore Aut(G) is
a group.

(b) Let γ : G → Aut(G) be defined by g 7→ ϕg where ϕg : G → G is the map that
conjugates by g, ϕg(x) = gxg−1. Prove that γ is a group homomorphism.

For all g, h, x ∈ G,

γ(gh)(x) = (gh)x(gh)−1 = ghxh−1g−1 = γ(g)(hxh−1)



= γ(g)(γ(h)(x)) = (γ(g) ◦ γ(h))(x).

Therefore γ(gh) = γ(g) ◦ γ(h) so γ is a homomorphism.

4. (2.5.2) Find all automorphisms of

(a) the cyclic group of order 10.

Let C10 be generated by x. An automorphism of C10 must send the generator
x to a generator. The other generators of C10 are x3, x7, x9. Therefore the four
automorphisms of C10 are

xk 7→ xk,

xk 7→ x3k,

xk 7→ x7k,

xk 7→ x9k.

(b) the symmetric group S3.

S3 has 3 elements of order 2, which are the swaps (1 2), (1 3), (2 3) (written in cycle
notation), and the set of swaps generates S3. There are six automorphisms of S3

obtained by conjugating by each of the six elements in S3. It can be checked that
these six maps permute the three swaps in all possible ways. Any automorphism of
S3 must send degree 2 elements to degree 2 elements so it must permute the swaps.
Since the swaps generate S3, any automorphism is determined by how it acts on
swaps. Therefore every automorphisms of S3 is equal to one of the six conjugation
maps.

5. (2.7.1) Let G be a group and define the relation ∼ on G by a ∼ b if b = gag−1 for some
g ∈ G (in which case we say a and b are conjugates).

(a) Prove that ∼ is an equivalence relation. Reflexive: For any a ∈ G, a = 1a1−1 so
a ∼ a.

Symmetric: If a ∼ b then b = gag−1 for some g ∈ G. Then a = g−1b(g−1)−1 so a the
conjugation of b by g−1 ∈ G. Therefore b ∼ a.

Transitive: If a ∼ b and b ∼ c, then b = gag−1 and c = hbh−1 for some g, h ∈ G.
Then c = hgag−1h−1 = (hg)a(hg)−1 so c is the conjugation of a by hg ∈ G. Therefore
a ∼ c.

(b) The equivalence classes of ∼ are called conjugacy classes. For a ∈ G, prove that a is
in the center of G if and only if its conjugacy class is {a}.
If the conjugacy class of a is {a} then gag−1 = a for all g ∈ G, so ga = ag for all
g ∈ G, meaning that a commutes with everything.

If a is in the center of G, then ga = ag for all g ∈ G, so gag−1 = a. Therefore a is
only conjugate to itself, so its conjugacy class is {a}.

6. Let H be the quaternion group, which can be represented as the group of matrices

H = {±1,±i,±j,±k}



where

1 =

[
1 0
0 1

]
, i =

[
i 0
0 −i

]
, j =

[
0 1
−1 0

]
, k =

[
0 i
i 0

]
.

The elements of H satsify the relations

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Find the conjugacy classes of H, and the center of H.

It can be checked that 1 and −1 commute with the other elements, so {1} and {−1} are
conjugacy classes. Then i commutes with ±1 and ±i so to find the conjugacy class of i
we only have to check what happens when conjugated by j or k.

jij−1 = ji(−j) = −ij(−j) = −i1 = −i.

kik−1 = ki(−k) = −ik(−k) = −i1 = −i.

Therefore {±i} is a conjugacy class. A similar computation shows that {±j} and {±k}
are also conjugacy classes. The center of H is {±1} since these elements have singleton
conjugacy classes.

7. (2.8.4) Let G be a group of order 35.

(a) Prove that G contains an element a of order 5.

The possible orders of elements of G are 1, 5, 7 or 35. If G has an element x of order
35, then x7 has order 5.

Assume that G has no elements of order 5. Then all 34 non-identity elements must
have order 7. Let x be a non-identity element, so

〈x〉 = {1, x, x2, x3, x4, x5, x6}.

Each of the non-identity elements in 〈x〉 generates the same cyclic subgroup 〈x〉.
On the other hand for any y /∈ 〈x〉, the cycles have 〈x〉 ∩ 〈y〉 = {1}. Therefore the
cycles partition the non-identity elements of G into sets of size 6. However 34 is not
a multiple of 6, so this is a contradiction. G must have an element a of order 5.

(b) Prove that G contains an element b of order 7.

Run the same argument as in part (a) with 5 and 7 switched. 34 is not a multiple
of 4, so G must contain an element b of order 7.

(c) Prove that 〈a, b〉 = G.

[Hint: show that the elements anbm with 0 ≤ n < 5 and 0 ≤ m < 7 are distinct.]

Suppose an1bm1 = an2bm2 with 0 ≤ n1, n2 < 5 and 0 ≤ m1,m2 < 7. Then an1−n2 =
bm2−m1 . If n1 6= n2 then 0 < |n1 − n2| < 5 so an1−n2 has order 5. However since b
has order 7, bm2−m1 cannot have order 5 which is a contadiction.

Therefore n1 = n2. By left-cancellation, bm1 = bm2 so bm2−m1 = 1. Since b has order
7, m2 −m1 must be a multiple of 7. Note that |m2 −m1| < 7 so then m1 = m2.

The above shows that 〈a, b〉 has 35 distinct elements so it must equal to G.


