due February 7

- 1. Let G be a group with identity element e.
 - (a) Prove that G/G is trivial. G/G is defined as the set of left cosets of G,

$$G/G = \{aG \mid a \in G\}.$$

However every coset aG is equal to G, so $G/G = \{G\}$ which is trivial.

- (b) Prove that G/{e} is isomorphic to G.
 Each left coset of the trivial group has the form a{e} = {ae} = {a}, so the quotient map q : G → G/{e} is given by q(a) = {a} for each a ∈ G. It follows that q is injective, and since we already know the quotient map is a surjective homomorphism, q is an isomorphism.
- 2. Let G be the additive group of \mathbb{R}^2 and H the subgroup

$$H = \{ (x, x) \mid x \in \mathbb{R} \}.$$

(a) Characterize all left cosets of *H*.The left coset for the point (a, b) is given by

$$(a,b)H = \{(a+x,b+x) \mid x \in \mathbb{R}\}.$$

This is the line given by the equation y = x + b - a. So the left cosets are all lines of the form y = x + c for all $c \in \mathbb{R}$.

(b) Prove that G/H is isomorphic to the additive group of \mathbb{R} .

Define a function $g: G/H \to \mathbb{R}$ that sends the line y = x + c to c. Equivalently g can be defined by $g(\overline{(a,b)}) = b - a$. For the latter definition, we need to check that this is well-defined. Suppose $\overline{(a,b)} = \overline{(c,d)}$, so (c,d) = (a+x,b+x) for some $x \in \mathbb{R}$. Then

$$g(\overline{(c,d)}) = d - c = (b+x) - (a+x) = b - a = g(\overline{(a,b)})$$

so the function is well-defined.

To prove g is injective, suppose that $g(\overline{(a,b)}) = \underline{g((c,d)})$, so b - a = d - c. Let x = c - a. Then (c,d) = (a + x, b + x) so $\overline{(a,b)} = \overline{(c,d)}$. To prove g is surjective, note that for any $c \in \mathbb{R}$, $g(\overline{(0,c)}) = c$. Finally, to prove that g is a homomorphosm,

$$g(\overline{(a,b)} + \overline{(c,d)}) = \overline{(a+c,b+d)} = (b+d) - (a+c) = (b-a) + (d-c) = g(\overline{(a,b)}) + \overline{(c,d)}.$$

- (c) Find a homomorphism $f : \mathbb{R}^2 \to \mathbb{R}$ with ker f = H. Let $q : G \to G/H$ be the quotient map, which has kernel H, and $g : G/H \to \mathbb{R}$ be the isomorphism defined in part (b). Then $f = g \circ q : G \to \mathbb{R}$ is a homomorphism with ker f = H. This map f is defined as f(a, b) = b - a.
- 3. (2.12.4) Let $G = \mathbb{C}^{\times}$ and $H = \{\pm 1, \pm i\}$, the subgroup of fourth roots of unity.
 - (a) Characterize all left cosets of *H*.For each non-zero complex number *z*, the coset for *z* is

$$zH = \{\pm z, \pm iz\}.$$

(b) Prove or disprove that G/H isomorphic to G.

Let $f : G/H \to G$ be defined by $f(\overline{z}) = z^4$. For each $c \in \mathbb{C}^{\times}$, there are exactly 4 roots of the equation $z^4 = c$. If z is one of the roots, then the set of roots is $\{\pm z, \pm iz\} = zH$. Therefore there is exactly one coset in G/H mapping to each $c \in G$, so f is a bijection. To prove it is a homomorphism,

$$f(\overline{z} \cdot \overline{w}) = f(\overline{zw}) = (zw)^4 = z^4 w^4 = f(\overline{z})f(\overline{w})$$

4. (2.12.1) Show that if a subgroup H of a group G is not normal, then there are left cosets aH and bH whose product is not a coset of H.

Suppose H is not a normal subgroup of G, so there is $h \in H$ and $g \in G$ such that $ghg^{-1} \notin H$. Let $b = g^{-1}$ and let a be some other element of G. Since H is a subgroup, it also contains 1 and h^{-1} . The product set aHbH contains both the elements x = a1b1 = ab and $y = ah^{-1}b1 = ah^{-1}b$. If aHbH were a coset, then x and y would satisfy $y^{-1}x \in H$. However

$$y^{-1}x = (ah^{-1}b)^{-1}ab = b^{-1}ha^{-1}ab = b^{-1}hb = ghg^{-1}$$

which is not in H so x and y are in different cosets. Therefore aHbH is not a coset.

5. Let K be a normal subgroup of G and $q: G \to G/K$ be the quotient map. Let $f: G \to H$ be a homomorphism with $K \subseteq \ker(f)$. Prove that f factors through q, meaning that there exists a homomorphism $\varphi: G/K \to H$ such that $f = \varphi \circ q$.

We want to define a map φ such that $f(a) = \varphi(q(a))$ for all $a \in G$. Since $q(a) = \overline{a}$, we define φ by $\varphi(\overline{a}) = f(a)$. To check that this φ is well-defined, suppose that $\overline{a} = \overline{b}$, so b = ak for some $k \in K$. Then

$$\varphi(b) = f(b) = f(ak) = f(a)f(k).$$

Because $k \in K \subseteq \ker(f)$, we have f(k) = 1 so

$$f(a)f(k) = f(a) \cdot 1 = f(a) = \varphi(\overline{a}).$$

To check that φ is a homomorphism,

$$\varphi(\overline{a} \cdot \overline{b}) = \varphi(\overline{ab}) = f(ab) = f(a)f(b) = \varphi(\overline{a})\varphi(\overline{b}).$$

6. (2.11.1) Let x be an element of group G with order r, and let y be an elements of group H with order s. Find the order of (x, y) in the product group $G \times H$.

The order of (x, y) is the smallest positive exponent n such that $(x, y)^n = (1, 1)$. Since $(x, y)^n = (x^n, y^n)$, this is the smallest positive integer n that is a multiple of both r and s. Therefore n = lcm(r, s).

7. (2.11.9) Let H and K be subroups of group G. Prove that the product set HK is a subgroup of G if and only if HK = KH.

Suppose HK = KH. For h_1k_1 and h_2k_2 in HK, we want to show that $(h_1k_1)(h_2k_2)^{-1}$ is also in HK.

$$(h_1k_1)(h_2k_2)^{-1} = h_1k_1k_2^{-1}h_2^{-1}$$

The factor $k_1k_2^{-1}h_2^{-1}$ is in KH = HK so it can be expressed as h'k' for some $h' \in H$ and $k' \in K$.

$$h_1k_1k_2^{-1}h_2^{-1} = h_1h'k'$$

and $h_1h' \in H$ and $k' \in K$ so the product is in HK.

Suppose that HK is a subgroup. Each $kh \in KH$ is the inverse of $h^{-1}k^{-1} \in HK$. Since HK is a group, that implies $kh \in HK$. Therefore $KH \subseteq HK$.

For each $hk \in HK$, $(hk)^{-1} = k^{-1}h^{-1} \in HK$, so $k^{-1}h^{-1} = h'k'$ for some $h' \in H$ and $k' \in K$. Then $hk = (h'k')^{-1} = (k')^{-1}(h')^{-1} \in KH$. Therefore $HK \subseteq KH$.

8. Let G and H be groups. Prove that $G \times \{1\}$ is a normal subgroup of $G \times H$. Prove that $(G \times H)/(G \times \{1\})$ is isomorphic to H.

Let $(g, 1) \in G \times \{1\}$ and $(a, b) \in G \times H$. Then

$$(a,b)(g,1)(a,b)^{-1} = (aga^{-1},b1b^{-1}) = (aga^{-1},1) \in G \times \{1\}$$

so $G \times \{1\}$ is normal.

In the quotient $(G \times H)/(G \times \{1\})$, the equivalence classes are

$$(g,h) = \{(gk,h) \mid k \in G\} = G \times \{h\},\$$

so there is one equivalence class for each element $h \in H$. The equivalence class $G \times \{h\}$ can be written as $\overline{(1,h)}$. Let $f: H \to (G \times H)/(G \times \{1\})$ be the map $f(h) = \overline{(1,h)}$. This is clearly a bijection. To prove it is a homomorphism,

$$f(a)f(b) = \overline{(1,a)(1,b)} = \overline{(1,ab)} = f(ab).$$