MATH 150A Winter 2020 - Problem Set 5

due February 19

- 1. Let C_n denote the cyclic group of order n.
 - (a) For which pairs of positive integers n and m is $C_n \times C_m$ cyclic?
 - (b) Prove that $\mathbb{Z} \times \mathbb{Z}$ is not cyclic.
- 2. Let G and H be groups and $\varphi : H \to \operatorname{Aut}(G)$ a homomorphism. The semidirect product group, $G \rtimes_{\varphi} H$, is defined as the set $G \times H$ with operation

$$(g_1, h_1)(g_2, h_2) = (g_1\varphi(h_1)(g_2), h_1h_2).$$

- (a) Prove that $G \rtimes_{\varphi} H$ is a group.
- (b) Prove that $G \times \{1\}$ is a normal subgroup of $G \rtimes_{\varphi} H$.
- 3. Let D_n denote the dihedral group for a regular *n*-gon with $n \ge 3$. Show that D_n has a semidirect product structure,

$$D_n \cong C_n \rtimes_{\varphi} C_2.$$

What is $\varphi: C_2 \to \operatorname{Aut}(C_n)$ in this case?

- 4. (7.1.2) Let *H* be a subgroup of group *G*. Describe the orbits of the *H*-action on *G* by left multiplication.
- 5. O(n) denotes the *orthogonal group*, the subgroup of $GL_n(\mathbb{R})$ consisting of all real orthogonal $n \times n$ matrices. These are the rotations and reflections of \mathbb{R}^n that fix the origin. Find the orbits of the O(2)-action on \mathbb{R}^2 . For a point $(x, y) \in \mathbb{R}^2$ what is its stabilizer?