MATH 150A Winter 2020 - Problem Set 6

due February 24

- 1. Let G be a group of order n that acts operates non-trivially on a set of size r. Prove that if n > r!, then G has a proper normal subgroup. (A *proper* subgroup of G is a subgroup that is neither trivial nor equal to G.)
- 2. (a) Prove that the transpositions $(1\ 2), (2\ 3), \ldots, (n-1\ n)$ generate the symmetric group S_n .
 - (b) How many transpositions are needed to write the cycle $(1 \ 2 \ 3 \cdots n)$?
 - (c) Prove that the cycle $(1 \ 2 \ 3 \cdots n)$ and $(1 \ 2)$ generate the symmetric group S_n .
- 3. Let σ be the 5-cycle (1 2 3 4 5) in S_5 . Find the element $\tau \in S_5$ which accomplishes the specified conjugation:
 - (a) $\tau \sigma \tau^{-1} = \sigma^2$,
 - (b) $\tau \sigma \tau^{-1} = \sigma^{-1}$,
 - (c) $\tau \sigma \tau^{-1} = \sigma^{-2}$.
- 4. Let C be the conjugacy class of an even permutation p in S_n . Show that C is either a conjugacy class in A_n , or else the union of two conjugacy classes in A_n of equal size. Explain how to decide which case occurs in terms of the centralizer of p.
- 5. Find the class equation for S_6 and give a representative for each conjugacy class.
- 6. Let G be a group of order 200. Prove that G has a normal Sylow 5-subgroup.
- 7. Let G be a group of order 105. Prove that G has a proper normal subgroup.