
MATH 150A Winter 2020 - Problem Set 6 solutions

due February 24

1. Let G be a group of order n that acts operates non-trivially on a set of size r. Prove that
if n > r!, then G has a proper normal subgroup. (A proper subgroup of G is a subgroup
that is neither trivial nor equal to G.)

Let X be the set that G acts on with |X| = r and |G| = n > r!. A G action on X defines
a homomorphism

ϕ : G→ Perm(X)

where Perm(X) denotes the permutation group of X. Since |Perm(X)| = r!, |G| >
|Perm(X)| so the map ϕ cannot be injective. Therefore kerϕ is a nontrivial normal
subgroup of G. Since the action of G is non-trivial, kerϕ 6= G, so kerϕ is a proper normal
subgroup.

2. (a) Prove that the transpositions (1 2), (2 3), . . . , (n−1 n) generate the symmetric group
Sn.

Let H be the subgroup generated by transpositions. We will prove that H = Sn.

Let ca,b = (a a+ 1 · · · b− 1 b) for 1 ≤ a < b ≤ n. These cycles are in H by

ca,b = (a a+ 1)(a+ 1 a+ 2) · · · (b− 2 b− 1)(b− 1 b).

An arbitrary swap (a, b) is in H by

(a b) = c−1a+1,bca,b

since ca,b moves b to the position of a and shifts the rest up by 1, and then c−1a+1,b

moves a (now in position a + 1) to the position of b and shifts the rest down by 1
back to where they started. The swaps are all the conjugates of the transpositions.

From this we can get arbitrary cycles of length m. Any cycle γ of length m is a
conjugate of c1,m so γ = σc1,mσ

−1 for some σ ∈ Sn. Therefore

γ = σc1,mσ
−1 = (σ(1 2)σ−1)(σ(2 3)σ−1) · · · (σ(m− 1 m)σ−1)

= (σ(1) σ(2))(σ(2) σ(3)) · · · (σ(m− 1) σ(m))

and each (σ(k) σ(k + 1)) is in H because it is a swap.

Finally, every permutation can be expressed as a product of cycles so H = Sn.

(b) How many transpositions are needed to write the cycle (1 2 3 · · ·n)?

I think the minimum is n− 1:

c1,n = (1 2)(2 3) · · · (n− 2 n− 1)(n− 1 n),

but I don’t have a proof that there is no shorter expression.



(c) Prove that the cycle (1 2 3 · · ·n) and (1 2) generate the symmetric group Sn.

Since Sn is generated by the transpositions by part (a), we just need to show that
all transpositions can be generated by c1,n = (1 2 3 · · ·n) and (1 2). Recall that
conjugating (1 2) by a permutation σ gives

σ(1 2)σ−1 = (σ(1) σ(2)).

We want to get the transposition (k k + 1) this way. Since c1,n shifts all of the
elements (except n) up by one, take σ = ck−11,n .

(k k + 1) = ck−11,n (1 2)c−k+1
1,n .

3. Let σ be the 5-cycle (1 2 3 4 5) in S5. Find the element τ ∈ S5 which accomplishes the
specified conjugation:

(a) τστ−1 = σ2,

(b) τστ−1 = σ−1,

(c) τστ−1 = σ−2.

Recall that conjugating σ by a permutation τ gives

τ(1 2 3 4 5)τ−1 = (τ(1) τ(2) τ(3) τ(4) τ(5)).

Then
σ2 = (1 3 5 2 4) = τ(1 2 3 4 5)τ−1 = (τ(1) τ(2) τ(3) τ(4) τ(5))

so τ(1) = 1, τ(2) = 3, τ(3) = 5, τ(4) = 2, τ(4) = 4.

σ−1 = (1 5 4 3 2) = τ(1 2 3 4 5)τ−1 = (τ(1) τ(2) τ(3) τ(4) τ(5))

so τ(1) = 1, τ(2) = 5, τ(3) = 4, τ(4) = 3, τ(4) = 2.

σ−2 = (1 4 2 5 3) = τ(1 2 3 4 5)τ−1 = (τ(1) τ(2) τ(3) τ(4) τ(5))

so τ(1) = 1, τ(2) = 4, τ(3) = 2, τ(4) = 5, τ(4) = 3.

4. Let C be the conjugacy class of an even permutation p in Sn. Show that C is either
a conjugacy class in An, or else the union of two conjugacy classes in An of equal size.
Explain how to decide which case occurs in terms of the centralizer of p.

The conjugacy class of p in Sn is

C = {gpg−1 | g ∈ Sn}.

Let C ′ be the conjugacy class of p in An,

C ′ = {gpg−1 | g ∈ An}.



Since An has index 2 in Sn, Sn is the disjoint union of two right cosets Sn = An ∪ Anσ
where σ is any odd permutation in Sn. Let

C ′′ = {gpg−1 | g ∈ Anσ}

so then C = C ′ ∪ C ′′. Let q = σpσ−1. Since σ and σ−1 are both odd and p is even, q is
also even so q ∈ An. Each g ∈ Anσ can be expressed as g = hσ for some h ∈ An, so then

gpg−1 = hσpσ−1h−1 = hqh−1.

Therefore C ′′ is the conjugacy class of q in An,

C ′′ = {hqh−1 | h ∈ An}.

The conjugacy classes in An partition An so either C ′ = C ′′ or they are disjoint. If C ′ = C ′′

then C is a conjugacy class in An. Otherwise C is the disjoint union of conjugacy classes
C ′ and C ′′.

Let K be the centralizer of p in Sn. Suppose there is an odd permutation τ ∈ K. Then
τ = hσ for some h ∈ An and

p = τpτ−1 = hσpσ−1h−1 = hqh−1,

so p ∈ C ′′. This implies C ′ = C ′′. Conversely if p ∈ C ′′ then p = hqh−1 = hσpσ−1h−1 for
some h ∈ An, so hσ is an odd permutation in K. Therefore p has no odd permutations
in its centralizer if and only if C ′ and C ′′ are disjoint.

Suppose C ′ 6= C ′′ so there are no odd permutations in K. Group Sn acts on Sn by
conjugation and the orbit of p under this action is C, while its stabilizer is K. The
counting formula gives

|Sn| = |C||K|.

Restricting the action to An, the orbit of p is C ′, but the centralizer of p is the same,
since K ⊆ An. The counting formula gives

|An| = |C ′||K|.

Since 2|An| = |Sn|, this implies that 2|C ′| = |C| so then |C ′| = |C ′′|.

5. Find the class equation for S6 and give a representative for each conjugacy class.

The conjugacy classes of S6 correspond to the possible cycle structures.

• The conjugacy class of the identity has 1 element.

• The conjugacy class of (1 2) has
(
6
2

)
= 15 elements.

• The conjugacy class of (1 2 3) has 2!
(
6
3

)
= 40 elements.

• The conjugacy class of (1 2 3 4) has 3!
(
6
4

)
= 90 elements.

• The conjugacy class of (1 2 3 4 5) has 4!
(
6
5

)
= 144 elements.

• The conjugacy class of (1 2 3 4 5 6) has 5!
(
6
6

)
= 120 elements.



• The conjugacy class of (1 2)(3 4) has 3
(
6
4

)
= 45 elements.

• The conjugacy class of (1 2 3)(4 5) has
(
6
5

)
2
(
5
3

)
= 120 elements.

• The conjugacy class of (1 2 3 4)(5 6) has 3!
(
6
4

)
= 90 elements.

• The conjugacy class of (1 2 3)(4 5 6) has 2
(
6
3

)
= 40 elements.

• The conjugacy class of (1 2)(3 4)(5 6) has
(
6
4

)(
4
2

)
/3! = 15 elements.

Therefore the class equation is

1 + 15 + 40 + 90 + 144 + 120 + 45 + 120 + 90 + 40 + 15 = 720.

6. Let G be a group of order 200. Prove that G has a normal Sylow 5-subgroup.

The number of Sylow 5-subgroups must be 5k + 1 for an integer k, and it must divide
200. The divisors of 200 are

1, 2, 4, 5, 10, 20, 40, 50, 100, 200

and 1 is the only number on the list of the form 5k + 1. Therefore there is only 1 Sylow
5-subgroup, so it must be normal.

7. Let G be a group of order 105. Prove that G has a proper normal subgroup.

The divisors of 105 are
1, 3, 5, 7, 15, 21, 35, 105.

The number of Sylow 5-subgroups is 1 or 21. The number of Sylow 7-subgroups is 1 or
15. The number of Sylow 3-subgroups is 1 or 7. Suppose that G has no proper normal
subgroups. Then G has 21 subgroups of order 5, 15 subgroups of order 7 and 7 subgroups
of order 3. Each Sylow 5-subgroup has 4 non-trivial elements, each with order 5. Any two
distinct Sylow 5-subgroups have trivial intersection. Therefore G has 21 · 4 = 84 elements
of order 5. Similarly G has 15 ·6 = 90 elements of order 7 and 7 ·2 = 14 elements of order
3. However G has only 105 elements, so this is a contradiction. Therefore G must have a
proper normal subgroup.


