MATH 150A Winter 2020 - Problem Set 7

due February 28

- 1. Find a presentation in terms of generators and relations for the following groups.
 - (a) $\mathbb{Z} \times \mathbb{Z}$
 - (b) $C_3 \times C_3$
 - (c) S_3
 - (d) A_4
- 2. The group $G = \langle x, y | xyx^{-1}y^{-1} \rangle$ is called a *free abelian group*. Prove a mapping property of this group: If u and v are elements of an abelian group A, there is a unique homomorphism $\varphi : G \to A$ such that $\varphi(x) = u$ and $\varphi(y) = v$.
- 3. Let F be the free group on $\{x, y\}$. Prove that the elements $u = x^2$, $v = y^2$, and z = xy generate a subgroup isomorphic to the free group on $\{u, v, z\}$.
- 4. Let F be the free group on a nonempty set S with |S| = k. How many elements with reduced word of length n does F have?
- 5. (a) Prove that the additive group of \mathbb{Q} is not finitely generated.
 - (b) Prove that the multiplicative group \mathbb{Q}^{\times} is not finitely generated.