
MATH 150A Winter 2020 - Problem Set 7 solutions

due February 28

1. Find a presentation in terms of generators and relations for the following groups.

(a) Z× Z

Z× Z = 〈x, y | xyx−1y−1〉.

Here x and y are the generators for each copy of Z. The only relation needed is that
they commute with each other, xy = yx.

(b) C3 × C3

C3 × C3 = 〈x, y | x3, y3, xyx−1y−1〉.

As above we have generators x and y for each copy of C3 and the relation that they
commute. Additionally x3 = 1 and y3 = 1.

(c) S3

Since S3
∼= D3, we have the presentation

D3 = 〈r, s | r3, s2, rsrs〉.

The symmetries of the triangle permute the 3 vertices, so r is a 3 cycle, r = (1 2 3),
and s is a swap, s = (1 2).

(d) A4

Similar to the previous example, S4 can be viewed as the symmetries of a tetrahe-
dron by permuting the 4 vertices. Then A4 consists of the orientation-preserving
symmetries, which are the rotations.

Let x be one of the rotations that fixes one of the vertices. This is a 3-cycle, such
as x = (1 2 3), which fixes vertex 4. Let y be one that fixes another vertex, such
as y = (2 3 4), which fixes vertex 1. Conjugating x by y or y−1, we can get the
rotations the fix either of the other two vertices,

yxy−1 = (1 3 4),

y−1xy = (1 4 2).

so we can generate all eight 3-cycles. Additionally, we have the product

xy = (1 2 3)(2 3 4) = (1 2)(3 4),

and conjugating by y and y−1 gives the remaining two elements

yx = (1 3)(2 4),



y−1xy2 = (1 4)(2 3).

Therefore {x, y} generates A4. Now we need the relations. Two easy ones are x3 = 1
and y3 = 1. Since xy is an elements with order 2, we have xyxy = 1. These are
sufficient to present the group:

A4 = 〈x, y | x3, y3, xyxy〉.

A brute-force method of showing that these relations are sufficient is to list out all
the elements of A4 in terms of the generators:

A4 = {1, x, x2, y, xy, x2y, y2, xy2, x2y2, y2x, xy2x, x2y2x}

and then show that the product of each of these elements with either x or y can be
put into the form of one of the other elements on the list using the relations. I don’t
know of a more efficient way to show this is true.

The above is just one of multiple presentations of A4. The textbook gives another
with 3 generators as the “tetrahedral group”.

2. The group G = 〈x, y | xyx−1y−1〉 is called a free abelian group. Prove a mapping prop-
erty of this group: If u and v are elements of an abelian group A, there is a unique
homomorphism ϕ : G→ A such that ϕ(x) = u and ϕ(y) = v.

Since ϕ is a homomorphism, it sends each word in x, y to the word with x replaced by u
and y replaced by v. Therefore the map is uniquely determined by the facts that ϕ(x) = u
and ϕ(y) = v, and that it is a homomorphism. To show that this definition of ϕ is well-
defined, we need to check that ϕ(r) = 1 for each relation r in the presentation of G, since
r = 1 in G and ϕ(1) = 1.

ϕ(xyx−1y−1) = uvu−1v−1.

Since A is abelian, u and v commute, so uvu−1v−1 = 1 as desired.

3. Let F be the free group on {x, y}. Prove that the elements u = x2, v = y2, and z = xy
generate a subgroup isomorphic to the free group on {u, v, z}.
Let G be the free group on {u, v, z} and ϕ : G→ F be the homomorphism with ϕ(u) = x2,
ϕ(v) = y2, ϕ(z) = xy. We want to show that ϕ is injective, in which case it is an
isomporphism onto its image, the subgroup 〈x2, y2, xy〉 of F .

We proceed by induction on n ≥ 1 to prove that any reduced word r ∈ G of length n
satisfies:

• if r ends in u then the reduced word of ϕ(r) ends in x,

• if r ends in u−1 then the reduced word of ϕ(r) ends in x−1x−1,

• if r ends in v then the reduced word of ϕ(r) ends in yy,

• if r ends in v−1 then the reduced word of ϕ(r) ends in y−1,

• if r ends in z then the reduced word of ϕ(r) ends in xy or x−1y,

• if r ends in z−1 then the reduced word of ϕ(r) ends in yx−1 or y−1x−1.



The base case is n = 1, where the reduced words with length 1 are u, v, z, u−1, v−1, z−1,
which satisfy the property.

For n > 1 let r = r1 · · · rn be a reduced word. Assume the property holds for all reduced
words of length n − 1. Let r′ = r1 · · · rn−1 which satisfies the property by the induction
hypothesis. Since r is reduced, rn 6= r−1n−1. We check that the property holds for each
possible value of rn:

• For rn = u, there is only cancelation with ϕ(r′) if rn−1 = z−1, in which case ϕ(r)
ends in yx or y−1x. Otherwise ϕ(r) ends in xx.

• For rn = u−1, there is never cancelation with ϕ(r′) so ϕ(r) ends in x−1x−1.

• For rn = v, there is never cancelation with ϕ(r′) so ϕ(r) ends in yy.

• For rn = v−1, there is only cancelation with ϕ(r′) if rn−1 = z, in which case ϕ(r)
ends in xy−1 or x−1y−1. Otherwise ϕ(r) ends in y−1y−1.

• For rn = z, there is only cancelation with ϕ(r′) if rn−1 = u−1, in which case ϕ(r)
ends in x−1y. Otherwise ϕ(r) ends in xy.

• For rn = z−1, there is only cancelation with ϕ(r′) if rn−1 = v, in which case ϕ(r)
ends in yx−1. Otherwise ϕ(r) ends in y−1x−1.

Therefore ϕ(r) 6= 1 for any r ∈ G with reduced word of positive length. So kerϕ is trivial
and ϕ is injective.

4. Let F be the free group on a nonempty set S with |S| = k. How many elements with
reduced word of length n does F have?

Let S = {a1, . . . , ak}. The elements of F are the words in alphabet

S ∪ S−1 = {a1, . . . , ak, a−11 , . . . , a−1k }.

The only requirement for such a word to be reduced is that a letter is never followed by
its inverse. To make a reduced word x1x2 · · · xn of length n, we will choose the letters one
at a time. For the first letter we can choose any x1 ∈ S ∪ S−1, so there are 2k choices.
The second letter can be any element x2 ∈ S ∪ S−1 except for x−11 , so there are 2k − 1
choices. Similarly, we have 2k − 1 choices for each letter after that, up to xn. Therefore
the total number of possible reduced words of length n is

2k(2k − 1)n−1.

5. (a) Prove that the additive group of Q is not finitely generated.

Let S be a finite set of rational numbers,

S =

{
a1
b1
,
a2
b2
, . . . ,

ak
bk

}
where ai, bi ∈ Z and bi > 0 for each i = 1, . . . , k. Let d be the least common multiple
of b1, . . . , bk. Then each element of S can be rewritten as a fraction with denominator
d, by ai/bi = a′i/d where a′i is the integer aid/bi.



The subgroup generated by S consists of all sums and differences of its elements, so
g ∈ 〈S〉 has the form

g = n1
a′1
d

+ · · ·+ nk
a′k
d

=
n1a

′
1 + · · ·+ nka

′
k

d

for some integers n1, . . . , nk. Since all elements of 〈S〉 can be written with denomi-
nator d, it has no positive elements less than 1/d. In particular the rational number
1/(d + 1) is not in 〈S〉. Therefore S does not generate Q.

(b) Prove that the multiplicative group Q× is not finitely generated.

Again let S be a finite set of rational numbers,

S =

{
a1
b1
,
a2
b2
, . . . ,

ak
bk

}
.

Every element g of the subgroup generated by S has the form

g =

(
a1
b1

)n1

· · ·
(
ak
bk

)nk

= an1
1 b−n1

1 · · · ank
k b−nk

k

for some integers n1, . . . , nk. Suppose g ∈ 〈S〉 is an integer prime number. Then by
Euclid’s Lemma, g must divide at least one of a1, . . . , ak, b1, . . . , bk. There are only
a finite number of primes that satisfy this property. Therefore there exists a prime
p that divides none of them, and so p is not in 〈S〉. Therefore S does not generate
Q×.


