due March 6

- 1. Draw the Cayley graph for each group and generating set.
 - (a) C_{10} generated by $\{x\}$.
 - (b) C_{10} generated by $\{x^2, x^5\}$.
 - (c) A_4 generated by $\{(1\ 2\ 3), (2\ 3\ 4)\}.$
 - (d) $C_2 \times C_2 \times C_2$ generated by $\{(x, 1, 1), (1, x, 1), (1, 1, x)\}$.
- 2. Let G be a group generated by S and H a subgroup of G generated by $T \subseteq S$. Prove that H is normal in G if and only if all edges labelled by elements of T are loops in the Schreier coset graph of H in G with generating set S.
- 3. Given two elements of the lamplighter group

$$g = (n, (\dots, l_{-1}, l_0, l_1, \dots)),$$
$$h = (m, (\dots, k_{-1}, k_0, k_1, \dots)),$$

how can one determine if they are conjugates?

- 4. The *infinite dihedral group* D_{∞} is a subgroup of permutations of the integers generated by f(n) = -n and g(n) = 1 n, which reflect the integer number line over the point 0 and 1/2 respectively.
 - (a) Give a presentation of D_{∞} .
 - (b) Demonstrate a surjective homomorphism to each finite dihedral group $\varphi: D_{\infty} \to D_n$ for $n \geq 3$.
- 5. Use the Todd-Coxeter algorithm to analyze the group generated $\{x, y\}$ with the following relations. Determine the order of the group and identify the group if you can.

(a)
$$x^2 = 1, y^2 = 1, xyx = yxy$$
,
(b) $x^3 = 1, y^3 = 1, xyx = yxy$,
(c) $x^4 = 1, y^2 = 1, xyx = yxy$,
(d) $x^4 = 1, y^4 = 1, x^2y^2 = 1$,
(e) $x^3 = 1, y^2 = 1, yxyxy = 1$,

(f) $x^3 = 1, y^3 = 1, yxyxy = 1.$