
MATH 150A Winter 2020 - Problem Set 8 solution

due March 6

1. Draw the Cayley graph for each group and generating set.

(a) C10 generated by {x}.
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(b) C10 generated by {x2, x5}.
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Edges for x2 are in blue, and for x5 are in red.

(c) A4 generated by {(1 2 3), (2 3 4)}.
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Edges for (1 2 3) are in blue, and for (2 3 4) are in red.

(d) C2 × C2 × C2 generated by {(x, 1, 1), (1, x, 1), (1, 1, x)}.

(1, 1, 1) (x, 1, 1)

(1, x, 1) (x, x, 1)

(1, 1, x) (x, 1, x)

(1, x, x) (x, x, x)

Edges for (x, 1, 1) are in blue, for (1, x, 1) are in red, and for (1, 1, x) are in green.

2. Let G be a group generated by S and H a subgroup of G generated by T ⊆ S. Prove
that H is normal in G if and only if all edges labelled by elements of T are loops in the
Schreier coset graph of H in G with generating set S.

The vertex set of the Schreier coset graph is the set right-cosets {Hg | g ∈ G}. If all
edges labelled by elements of T are loops in the graph, then Hgt = Hg for all t ∈ T and
g ∈ G. Therefore gt = hg for some h ∈ H, so the conjugation gtg−1 is in H for all t ∈ T
and g ∈ G. Since T generates H, this implies that ghg−1 ∈ H for all h ∈ H and g ∈ G,
so H is normal.

Conversely if H is normal, ghg−1 ∈ H for all h ∈ H and g ∈ G, so in particular gtg−1 ∈ H
for all t ∈ T . Therefore Hgt = Hg so all edges labelled by t are loops.

3. Given two elements of the lamplighter group

g = (n, (. . . , l−1, l0, l1, . . .)),



h = (m, (. . . , k−1, k0, k1, . . .)),

how can one determine if they are conjugates?

If g and h are conjugates, then h = f−1gf for some element

f = (p, (. . . , j−1, j0, j1, . . .))

and the inverse of f is
f−1 = (−p, (. . . , jp−1, jp, jp+1, . . .)).

Composing, we have that m = p + n− p = n and

ki = ji + li−p + ji−n

for each i ∈ Z. This gives a telescoping series for each i = 0, . . . , n− 1:∑
a∈Z

kan+i =
∑
a∈Z

lan+i−p.

These series converge because only a finite number of summands are non-zero. The
conditions for g and h to be conjugates are n = m and that there exists an integer p such
that the above series are equal for all 0 ≤ i < n. We can also take 0 ≤ p < n since its
value only matters modulo n.

4. The infinite dihedral group D∞ is a subgroup of permutations of the integers generated
by f(n) = −n and g(n) = 1 − n, which reflect the integer number line over the point 0
and 1/2 respectively.

(a) Give a presentation of D∞.

Functions f and g have both f ◦f and g◦g equal to the identity which gives relations
f 2 = g2 = 1. Let

G = 〈f, g | f 2, g2〉.

We want to know if G = D∞ or if more relations are needed. In G we can reduce
any word in {f, g, f−1, g−1} to one consisting of alternating f and g, so it has one of
the following forms:

fgfg · · · fg = (fg)k,

fgfg · · · fgf = (fg)kf,

gfgf · · · gf = (gk)k,

gfgf · · · gfg = (gf)kg

with k ≥ 0. It can be checked that these all give distnct functions in D∞ since
(fg)k(n) = n−k, (fg)kf(n) = −n−k, (gf)k(n) = n+k and (gf)kg(n) = −n+k+1.
Therefore G = D∞.



(b) Demonstrate a surjective homomorphism to each finite dihedral group ϕ : D∞ → Dn

for n ≥ 3.

We have that f acts as a reflection of the integer number line, and gf is the function
that shifts every integer up by 1 (from part (a)), so let ϕ(f) = s and ϕ(gf) = r for

Dn = 〈r, s | rn, s2, rsrs〉.

Therefore ϕ(g) = ϕ(gf ·f) = rs. To check that this is a well-defined homomorphism,
each relation in D∞ must map to the identity.

ϕ(f 2) = s2 = 1,

ϕ(g2) = rsrs = 1.

The map ϕ is surjective because a generating set {r, s} of Dn is in the image and ϕ
is a homomorphism, so all of Dn is in the image.

5. Use the Todd-Coxeter algorithm to analyze the group generated {x, y} with the following
relations. Determine the order of the group and identify the group if you can.

(a) x2 = 1, y2 = 1, xyx = yxy,

Let G = 〈x, y | x2, y2, xyxy−1x−1y−1〉 and H = 〈x〉.
x x

1 1 1
2 3 2
3 2 3

y y
1 2 1
2 1 2
3 3 3

x y x y−1 x−1 y−1

1 1 2 3 3 2 1
2 3 3 2 1 1 2
3 2 1 1 2 3 3

Therefore H has three right-cosets, H, Hy, Hyx represented by 1, 2, 3 respectively.
Since Hy 6= Hyx, it must be that 1 6= x, so the subgroup H generated by x is not
trivial. Therefore |H| = 2. This means that |G| = 6 so it is either C6 or S3. If G
were abelian then Hyx = Hxy = Hy, but this is not the case, so G = S3.

(b) x3 = 1, y3 = 1, xyx = yxy,

Let G = 〈x, y | x3, y3, xyxy−1x−1y−1〉 and H = 〈x〉.
x x x

1 1 1 1
2 3 4 2
3 4 2 3
4 2 3 4
5 7 8 5
6 6 6 6
7 8 5 7
8 5 7 8

y y y
1 2 5 1
2 5 1 2
3 3 3 3
4 6 7 4
5 1 2 5
6 7 4 6
7 4 6 7
8 8 8 8



x y x y−1 x−1 y−1

1 1 2 3 3 2 1
2 3 3 4 7 5 2
3 4 6 6 4 3 3
4 2 5 7 6 6 4
5 7 4 2 1 1 5
6 6 7 8 8 7 6
7 8 8 5 2 4 7
8 5 1 1 5 8 8

Therefore H has 8 right-cosets, H, Hy, Hyx, Hyx2, Hy2, Hyx2y, Hy2x, Hy2x2

represented by 1, 2, 3, 4, 5, 6, 7, 8 respectively. Since Hy 6= Hyx, it must be
that 1 6= x, so the subgroup H generated by x is not trivial. Therefore |H| = 3 so
|G| = 24. Hy 6= Hyx also implies G is not abelian. But G 6= S4 since S4 is not
generated by its order 3 elements.

(c) x4 = 1, y2 = 1, xyx = yxy,

Let G = 〈x, y | x4, y2, xyxy−1x−1y−1〉 and H = 〈y〉.
x x x x

1 2 1 2 1
2 1 2 1 2
3 3 3 3 3

y y
1 1 1
2 3 2
3 2 3

x y x y−1 x−1 y−1

1 2 3 3 2 1 1
2 1 1 2 3 3 2
3 3 2 1 1 2 3

Therefore H has 3 right-cosets, H, Hx, Hxy represented by 1, 2, 3 respectively.
Since Hx 6= Hxy, it must be that 1 6= y, so the subgroup H generated by y is not
trivial. Therefore |H| = 2 so |G| = 6. Hy 6= Hyx also implies G is not abelian, so
G = S3. Even though we have the relation x4 = 1, in this group x actually has order
2.

(d) x4 = 1, y4 = 1, x2y2 = 1,

Let G = 〈x, y | x4, y4, x2y2〉. This group is infinite. Its relations are generated by
the relations of the infinite dihedral group, 〈x, y | x2, y2〉. We can still analyze G if
we choose H to be something large enough that the index [G : H] is finite.

(e) x3 = 1, y2 = 1, yxyxy = 1,

Let G = 〈x, y | x3, y2, yxyxy〉 and H = {1}.
x x x

1 1 1 1
y y

1 1 1

y x y x y
1 1 1 1 1 1

Therefore G is the trivial group.

(f) x3 = 1, y3 = 1, yxyxy = 1.

Let G = 〈x, y | x3, y3, yxyxy〉 and H = {1}.



x x x
1 1 1 1
2 2 2 2
3 3 3 3

y y y
1 2 3 1
2 3 1 2
3 1 2 3

y x y x y
1 2 2 3 3 1
2 3 3 1 1 2
3 1 1 2 2 3

Therefore G has 3 elements, {1, y, y2} and x = 1, so G = C3.


