MATH 150A Winter 2020 - Problem Set 8 solution

due March 6

1. Draw the Cayley graph for each group and generating set.

Edges for x^2 are in blue, and for x^5 are in red.

(c) A_4 generated by $\{(1\ 2\ 3), (2\ 3\ 4)\}.$

Edges for $(1 \ 2 \ 3)$ are in blue, and for $(2 \ 3 \ 4)$ are in red.

(d) $C_2 \times C_2 \times C_2$ generated by $\{(x, 1, 1), (1, x, 1), (1, 1, x)\}$.

Edges for (x, 1, 1) are in blue, for (1, x, 1) are in red, and for (1, 1, x) are in green.

2. Let G be a group generated by S and H a subgroup of G generated by $T \subseteq S$. Prove that H is normal in G if and only if all edges labelled by elements of T are loops in the Schreier coset graph of H in G with generating set S.

The vertex set of the Schreier coset graph is the set right-cosets $\{Hg \mid g \in G\}$. If all edges labelled by elements of T are loops in the graph, then Hgt = Hg for all $t \in T$ and $g \in G$. Therefore gt = hg for some $h \in H$, so the conjugation gtg^{-1} is in H for all $t \in T$ and $g \in G$. Since T generates H, this implies that $ghg^{-1} \in H$ for all $h \in H$ and $g \in G$, so H is normal.

Conversely if H is normal, $ghg^{-1} \in H$ for all $h \in H$ and $g \in G$, so in particular $gtg^{-1} \in H$ for all $t \in T$. Therefore Hgt = Hg so all edges labelled by t are loops.

3. Given two elements of the lamplighter group

$$g = (n, (\ldots, l_{-1}, l_0, l_1, \ldots)),$$

$$h = (m, (\ldots, k_{-1}, k_0, k_1, \ldots)),$$

how can one determine if they are conjugates?

If g and h are conjugates, then $h = f^{-1}gf$ for some element

$$f = (p, (\dots, j_{-1}, j_0, j_1, \dots))$$

and the inverse of f is

$$f^{-1} = (-p, (\dots, j_{p-1}, j_p, j_{p+1}, \dots)).$$

Composing, we have that m = p + n - p = n and

$$k_i = j_i + l_{i-p} + j_{i-n}$$

for each $i \in \mathbb{Z}$. This gives a telescoping series for each $i = 0, \ldots, n-1$:

$$\sum_{a \in \mathbb{Z}} k_{an+i} = \sum_{a \in \mathbb{Z}} l_{an+i-p}.$$

These series converge because only a finite number of summands are non-zero. The conditions for g and h to be conjugates are n = m and that there exists an integer p such that the above series are equal for all $0 \le i < n$. We can also take $0 \le p < n$ since its value only matters modulo n.

- 4. The *infinite dihedral group* D_{∞} is a subgroup of permutations of the integers generated by f(n) = -n and g(n) = 1 n, which reflect the integer number line over the point 0 and 1/2 respectively.
 - (a) Give a presentation of D_{∞} . Functions f and g have both $f \circ f$ and $g \circ g$ equal to the identity which gives relations $f^2 = g^2 = 1$. Let

$$G = \langle f, g \mid f^2, g^2 \rangle.$$

We want to know if $G = D_{\infty}$ or if more relations are needed. In G we can reduce any word in $\{f, g, f^{-1}, g^{-1}\}$ to one consisting of alternating f and g, so it has one of the following forms:

$$fgfg \cdots fg = (fg)^{k},$$

$$fgfg \cdots fgf = (fg)^{k}f,$$

$$gfgf \cdots gf = (gk)^{k},$$

$$gfgf \cdots gfg = (gf)^{k}g$$

with $k \ge 0$. It can be checked that these all give distinct functions in D_{∞} since $(fg)^k(n) = n-k, (fg)^k f(n) = -n-k, (gf)^k(n) = n+k$ and $(gf)^k g(n) = -n+k+1$. Therefore $G = D_{\infty}$. (b) Demonstrate a surjective homomorphism to each finite dihedral group $\varphi: D_{\infty} \to D_n$ for $n \geq 3$.

We have that f acts as a reflection of the integer number line, and gf is the function that shifts every integer up by 1 (from part (a)), so let $\varphi(f) = s$ and $\varphi(gf) = r$ for

$$D_n = \langle r, s \mid r^n, s^2, rsrs \rangle.$$

Therefore $\varphi(g) = \varphi(gf \cdot f) = rs$. To check that this is a well-defined homomorphism, each relation in D_{∞} must map to the identity.

$$\varphi(f^2) = s^2 = 1,$$
$$\varphi(g^2) = rsrs = 1.$$

The map φ is surjective because a generating set $\{r, s\}$ of D_n is in the image and φ is a homomorphism, so all of D_n is in the image.

5. Use the Todd-Coxeter algorithm to analyze the group generated $\{x, y\}$ with the following relations. Determine the order of the group and identify the group if you can.

(a)	$x^{2} =$	= 1,	y^2	= 1	, xy	x =	yx	y,				
	Let	<i>G</i> =	= (:	$x,y \mid$	x^2	$, y^2,$	xyx	$xy^{-1}x$	^{-1}y	$^{-1}\rangle$ an	d H =	$\langle x \rangle.$
		x		x				y		y	_	
	1		1		1		1		2	1		
	2		3		2		2		1	2		
	3		2		3		3		3	3		
		x		y		x		y^{-1}		x^{-1}	y^{-}	-1
	1		1		2		3		3		2	1
	2		3		3		2		1		1	2
	3		2		1		1		2		3	3

Therefore H has three right-cosets, H, Hy, Hyx represented by 1, 2, 3 respectively. Since $Hy \neq Hyx$, it must be that $1 \neq x$, so the subgroup H generated by x is not trivial. Therefore |H| = 2. This means that |G| = 6 so it is either C_6 or S_3 . If G were abelian then Hyx = Hxy = Hy, but this is not the case, so $G = S_3$.

(b)
$$x^3 = 1, y^3 = 1, xyx = yxy$$

Let	$G = \langle x, y \rangle$	$y \mid x^3, y$	$y^3, xyxy^3$	$^{-1}x^{-1}y^{-1}$	\rangle and	$H = \langle x$	$z\rangle$.
	x x		x	y		y :	y
1	1	1	1	1	2	5	1
2	3	4	2	2	5	1	2
3	4	2	3	3	3	3	3
4	2	3	4	4	6	7	4
5	7	8	5	5	1	2	5
6	6	6	6	6	7	4	6
$\overline{7}$	8	5	7	7	4	6	7
8	5	7	8	8	8	8	8

	x	y	x	y^{-1}	x^{-1}	y^{-1}
1	1	2	3	3	2	1
2	3	3	4	7	5	2
3	4	6	6	4	3	3
4	2	5	7	6	6	4
5	7	4	2	1	1	5
6	6	7	8	8	7	6
7	8	8	5	2	4	7
8	5	1	1	5	8	8

Therefore H has 8 right-cosets, H, Hy, Hyx, Hyx^2 , Hy^2 , Hyx^2y , Hy^2x , Hy^2x^2 represented by 1, 2, 3, 4, 5, 6, 7, 8 respectively. Since $Hy \neq Hyx$, it must be that $1 \neq x$, so the subgroup H generated by x is not trivial. Therefore |H| = 3 so |G| = 24. $Hy \neq Hyx$ also implies G is not abelian. But $G \neq S_4$ since S_4 is not generated by its order 3 elements.

(c)
$$x^4 = 1, y^2 = 1, xyx = yxy,$$

Let	G =	= (3	x,y	$ x^4 $	$, y^{2},$	xy:	$xy^{-1}x^{-1}$	$y^{-1}\rangle$	and	$H = \langle$	$y\rangle$.	
	x		x		x		x			y	y	
1		2		1		2	1	-	1	1		1
2		1		2		1	2		2	3		2
3		3		3		3	3		3	2		3
	x		y		x		y^{-1}	x^{-}	-1	y^{-1}		
1		2		3		3		2	1		1	-
2		1		1		2		3	3		2	
3		3		2		1		1	2	2	3	

Therefore H has 3 right-cosets, H, Hx, Hxy represented by 1, 2, 3 respectively. Since $Hx \neq Hxy$, it must be that $1 \neq y$, so the subgroup H generated by y is not trivial. Therefore |H| = 2 so |G| = 6. $Hy \neq Hyx$ also implies G is not abelian, so $G = S_3$. Even though we have the relation $x^4 = 1$, in this group x actually has order 2.

(d)
$$x^4 = 1, y^4 = 1, x^2 y^2 = 1,$$

Let $G = \langle x, y \mid x^4, y^4, x^2y^2 \rangle$. This group is infinite. Its relations are generated by the relations of the infinite dihedral group, $\langle x, y \mid x^2, y^2 \rangle$. We can still analyze G if we choose H to be something large enough that the index [G:H] is finite.

(e)
$$x^{3} = 1, y^{2} = 1, yxyxy = 1,$$

Let $G = \langle x, y \mid x^{3}, y^{2}, yxyxy \rangle$ and $H = \{1\}.$
 $\frac{x \quad x \quad x}{1 \quad 1 \quad 1 \quad 1} \quad \frac{y \quad y}{1 \quad 1 \quad 1 \quad 1}$
 $\frac{y \quad x \quad y \quad x \quad y}{1 \quad 1 \quad 1 \quad 1 \quad 1}$

Therefore G is the trivial group.

(f)
$$x^3 = 1, y^3 = 1, yxyxy = 1.$$

Let $G = \langle x, y \mid x^3, y^3, yxyxy \rangle$ and $H = \{1\}.$

	x		x		x				Į	ļ	y		y	
1		1		1		1		1		2)	3		1
2		2		2		2		2		3		1		2
3		3		3		3		3		1		2		3
	y		x		y		x		y					
1									<u> </u>					
T		2		2		3		3	0	1				
$\frac{1}{2}$		$\frac{2}{3}$		$\frac{2}{3}$		3 1		3 1		$\frac{1}{2}$				

Therefore G has 3 elements, $\{1, y, y^2\}$ and x = 1, so $G = C_3$.