MATH 150A Winter 2020 - Problem Set 9

due March 13

- 1. Let m be an orientation-reversing isometry of \mathbb{R}^2 . Prove algebraically that m^2 is a translation.
- 2. Find the conjugacy class of an isometry of \mathbb{R}^2 of each of the following types.
 - (a) Translation.
 - (b) Rotation about a point.
 - (c) Reflection across a line.
 - (d) Glide reflection across a line.
- 3. Let ℓ_1 and ℓ_2 be lines through the origin in \mathbb{R}^2 that intersect at an angle of π/n and let r_i be the reflection across ℓ_i . Prove that r_1 and r_2 generate a dihedral group D_n .
- 4. Let S and S' be subsets of \mathbb{R}^n . S is dense in S' if for every point $a \in S'$ and every $\varepsilon > 0$, there is $s \in S$ with $|a s| < \varepsilon$.
 - (a) Prove that an additive subgroup G of \mathbb{R} is either dense in \mathbb{R} or else discrete.
 - (b) Prove that the additive subgroup of \mathbb{R} generated by 1 and $\sqrt{2}$ is dense in \mathbb{R} .
 - (c) Let H be a subgroup of SO_2 . Prove that either H is cyclic or dense in SO_2 .
- 5. Find the symmetry group of
 - (a) an I-beam, which one can think of as the product set of the letter I and an interval.
 - (b) a baseball (or equivalently a tennis ball) accounting for the seam.