due March 13

1. Let m be an orientation-reversing isometry of \mathbb{R}^2 . Prove algebraically that m^2 is a translation.

An isometry of \mathbb{R}^2 can be decomposed into a translation t_a and an orthogonal linear transformation s, so $m = t_a s$. Since m is orientation-reversing, the linear transformation s is a reflection across a line through the origin. Then

$$m^2 = t_a s t_a s.$$

We showed in class that for s a linear transformation, $st_a = t_{s(a)}s$. Therefore

$$m^2 = t_a s t_a s = t_a t_{s(a)} s^2 = t_{a+s(a)}$$

since $s^2 = 1$.

- 2. Find the conjugacy class of an isometry of \mathbb{R}^2 of each of the following types.
 - (a) Translation.

Let t_a be a translation, and $m = t_b \varphi$ be an arbitrary isometry of \mathbb{R}^2 where φ is an orthogonal linear transformation. Then

$$mt_a m^{-1} = t_b \varphi t_a \varphi^{-1} t_b^{-1}$$

The inverse of t_b is t_{-b} . As in Problem 1, We have $\varphi t_a = t_{\varphi(a)}\varphi$ so

$$t_b\varphi t_a\varphi^{-1}t_b^{-1} = t_b t_{\varphi(a)}\varphi\varphi^{-1}t_{-b} = t_b t_{\varphi(a)}t_{-b} = t_{\varphi(a)}$$

Note that $\varphi(a)$ can be any point in \mathbb{R}^2 with $|\varphi(a)| = |a|$, so the conjugacy class of t_a is

$$\{t_c \mid c \in \mathbb{R}^2 \text{ with } |c| = |a|\}.$$

(b) Rotation about a point.

Let $t_a \rho_{\theta}$ be a rotation, and $m = t_b \varphi$ be an arbitrary isometry of \mathbb{R}^2 . Then

$$mt_a \rho_\theta m^{-1} = t_b \varphi t_a \rho_\theta \varphi^{-1} t_b^{-1}.$$

Conjugating t_a by φ gives $t_{\varphi(a)}$. If φ is a rotation, then it commutes with ρ_{θ} , so $\varphi \rho_{\theta} \varphi^{-1} = \rho_{\theta}$. In this case we have

$$t_b\varphi t_a\rho_\theta\varphi^{-1}t_b^{-1} = t_b t_{\varphi(a)}\rho_\theta t_{-b} = t_b t_{\varphi(a)}t_{b'}\rho_\theta = t_{b+\varphi(a)+b'}\rho_\theta$$

where $b' = \rho_{\theta}(-b)$. If φ is a reflection, then $\varphi \rho_{\theta} \varphi^{-1} = \rho_{-\theta}$, the rotation in the opposite direction. Then

$$t_b\varphi t_a\rho_\theta\varphi^{-1}t_b^{-1} = t_b t_{\varphi(a)}\rho_{-\theta}t_{-b} = t_b t_{\varphi(a)}t_{b'}\rho_{-\theta} = t_{b+\varphi(a)+b'}\rho_{-\theta}$$

where $b' = \rho_{-\theta}(-b)$. Assuming $\theta \neq 0$, b + b' can be any vector in \mathbb{R}^2 for the right choice of b. Therefore the conjugacy class of ρ_{θ} is

$$\{t_c\rho_\theta \mid c \in \mathbb{R}^2\} \cup \{t_c\rho_{-\theta} \mid c \in \mathbb{R}^2\}.$$

(c) Reflection across a line.

Let $t_a r$ be a reflection where r is a reflection across a line through the origin orthogonal to a, and $m = t_b \varphi$ be an arbitrary isometry of \mathbb{R}^2 . Then

$$mt_a rm^{-1} = t_b \varphi t_a r \varphi^{-1} t_b^{-1}$$

Conjugating r by φ gives another reflection r' across a line through the origin, so

$$t_b \varphi t_a r \varphi^{-1} t_b^{-1} = t_b t_{\varphi(a)} r' t_{-b} = t_b t_{\varphi(a)} t_{b'} r' = t_{b+\varphi(a)+b'} r'$$

where b' = r'(-b). The vector b + b' is orthogonal to the reflection line of r' and so is $\varphi(a)$. Therefore the conjugacy class of $t_a r$ is the set of all reflections.

(d) Glide reflection across a line.

Let $t_c t_a r$ be a glide reflection where r is a reflection across a line through the origin orthogonal to a, and c is parallel to the line. Let $m = t_b \varphi$ be an arbitrary isometry of \mathbb{R}^2 . Then

$$mt_arm^{-1} = t_b\varphi t_b t_a r\varphi^{-1} t_b^{-1}.$$

This works out the same as the previous case

$$t_b\varphi t_c t_a r\varphi^{-1} t_b^{-1} = t_b t_{\varphi(c)+\varphi(a)} r' t_{-b} = t_b t_{\varphi(c)+\varphi(a)} t_{b'} r' = t_{b+\varphi(c)+\varphi(a)+b'} r'$$

where b' = r'(-b). The vector b + b' is orthogonal to the reflection line of r' and so is $\varphi(a)$. $\varphi(c)$ is still parallel to the reflection line with $|\varphi(c)| = |c|$. Therefore the conjugacy class is the set of glide reflections with glide of the same distance.

3. Let ℓ_1 and ℓ_2 be lines through the origin in \mathbb{R}^2 that intersect at an angle of π/n and let r_i be the reflection across ℓ_i . Prove that r_1 and r_2 generate a dihedral group D_n .

Suppose ℓ_1 is at angle θ from horizontal, and ℓ_2 is at angle $\theta + \pi/n$. Let u be the reflection across the x-axis. Then r_1 and r_2 can be expressed as

$$r_1 = \rho_{2\theta} u$$
 and $r_2 = \rho_{2\theta+2\pi/n} u$.

The conjugation of a rotation by a reflection is equal to the rotation in the opposite direction, so $u\rho_{2\theta}u^{-1} = \rho_{-2\theta}$. Note also that $u = u^{-1}$. Therefore

 $r_2 r_1 = \rho_{2\theta + 2\pi/n} u \rho_{2\theta} u = \rho_{2\theta + 2\pi/n} \rho_{-2\theta} = \rho_{2\pi/n}.$

A reflection and a rotation by angle $2\pi/n$ generate the dihedral group D_n , so r_1 and r_2r_1 generate D_n . The group generated by r_1 and r_2r_1 is also the group generated by r_1 and r_2 since $r_2 = r_2r_1 \cdot r_1$.

- 4. Let S and S' be subsets of \mathbb{R}^n . S is dense in S' if for every point $a \in S'$ and every $\varepsilon > 0$, there is $s \in S$ with $|a s| < \varepsilon$.
 - (a) Prove that an additive subgroup G of \mathbb{R} is either dense in \mathbb{R} or else discrete. Suppose that G is not discrete, so for any $\epsilon > 0$, there exist $x, y \in G$ with $x \neq y$ such that $|x - y| < \epsilon$. Since G is a subgroup, x - y and y - x are also in G, so there is some element $b \in G$ with $0 < b < \epsilon$. For any real number $a \in \mathbb{R}$, there is an integer n such that $nb \leq a < (n + 1)b$ by taking $n = \lfloor a/b \rfloor$. Then $nb \in G$ and $|a - nb| < b < \epsilon$. Therefore G is dense in \mathbb{R} .

- (b) Prove that the additive subgroup of \mathbb{R} generated by 1 and $\sqrt{2}$ is dense in \mathbb{R} . Let this subgroup be G and suppose it is not dense. By part (a) it must be discrete. We showed in class that a discrete subgroup of \mathbb{R} is trivial or $G = a\mathbb{Z}$ for some real number a > 0. Since G contains 1 and $\sqrt{2}$, it is not trivial. Then 1 = na and $\sqrt{2} = ma$ for some integers n and m, which means that a = 1/n and that $\sqrt{2} = m/n$. This is a contradiction because $\sqrt{2}$ is irrational. Therefore G must be dense.
- (c) Let H be a subgroup of SO₂. Prove that either H is cyclic or dense in SO₂. SO₂ is the group of rotations of SO₂. Let

$$G = \{\theta \in \mathbb{R} \mid \rho_{\theta} \in H\}$$

which is an additive subgroup of \mathbb{R} . Therefore G is dense or discrete. If G is dense then H is dense. If G is not dense, then G is trivial or G is generated by some real number a > 0. In this case H is also trivial or generated by ρ_a , so it is cyclic.

- 5. Find the symmetry group of
 - (a) an I-beam, which one can think of as the product set of the letter I and an interval. The I-beam can be reflected across each of the three coordinate planes. These generate a group of order 8 isomorphic to $C_2 \times C_2 \times C_2$ with elements

$$\begin{bmatrix} \pm 1 & 0 & 0 \\ 0 & \pm 1 & 0 \\ 0 & 0 & \pm 1 \end{bmatrix}$$

(b) a baseball (or equivalently a tennis ball) accounting for the seam.

A baseball is covered by two pieces of leather stiched together. The rotational symmetry of the ball is generated by a rotation by angle π that turns around each leather piece, and another rotation by angle π that switches the two pieces. Since these generators both have order 2, the rotational group is the Klein four group, $C_2 \times C_2$.

The baseball also has orientation-reversing symmetry, so the order of the full symmetry group is 8. Since these symmetries also have order 2, the group is also isomorphic to $C_2 \times C_2 \times C_2$.