MATH 150A Winter 2020 - Problem Set 9 solutions

due March 13

1. Let m be an orientation-reversing isometry of R2. Prove algebraically that m? is a trans-
lation.

An isometry of R? can be decomposed into a translation ¢, and an orthogonal linear
transformation s, so m = t,s. Since m is orientation-reversing, the linear transformation
s is a reflection across a line through the origin. Then

m? = taStas.

We showed in class that for s a linear transformation, st, = t,)s. Therefore

m2 = tastas = tats(a)s2 = ta+s(a)

since s% = 1.

2. Find the conjugacy class of an isometry of R? of each of the following types.

(a)

Translation.

Let t, be a translation, and m = t,¢ be an arbitrary isometry of R? where ¢ is an
orthogonal linear transformation. Then

mtym ! = tbgotago_ltb_l.
The inverse of t; is t_y. As in Problem 1, We have ¢t, = t )¢ so
tpta =ttty = titua)t-b = t(a)-

Note that ¢(a) can be any point in R? with |p(a)| = |al, so the conjugacy class of
ty 1S
{t. | c € R* with |c| = |al}.

Rotation about a point.
Let t,pp be a rotation, and m = t,¢ be an arbitrary isometry of R?. Then
mtapem ™" = typtape 't

Conjugating t, by ¢ gives t,). If ¢ is a rotation, then it commutes with py, so
©wpep~t = py. In this case we have

typtapep” ty 't = oty Pot—b = Loyt Po = torp(a)+bPo

where O/ = py(=b). If ¢ is a reflection, then @pyp~! = p_y, the rotation in the
opposite direction. Then

tyotaper "t = tit o) P—ot—b = totw(a)ty P—6 = torp(a)rt P—o

where 0/ = p_g(—b). Assuming 6 # 0, b+ ' can be any vector in R? for the right
choice of b. Therefore the conjugacy class of py is

{tpo | c € R*} U {t.p_g | c € R?}).



(c) Reflection across a line.

Let t,r be a reflection where r is a reflection across a line through the origin orthog-
onal to a, and m = t,p be an arbitrary isometry of R?. Then

mtarm_1 = tbgotargp_ltb_l.
Conjugating r by ¢ gives another reflection 7’ across a line through the origin, so
typtare = tyt oy t—b = tot (o)t ™ = torpa)in T
where b’ = 7/(—b). The vector b+ b is orthogonal to the reflection line of 7’ and so
is p(a). Therefore the conjugacy class of t,r is the set of all reflections.

(d) Glide reflection across a line.

Let t.t,r be a glide reflection where r is a reflection across a line through the origin
orthogonal to a, and c is parallel to the line. Let m = ¢ be an arbitrary isometry
of R?. Then

mtarm_1 = tbgotbtarcp_ltb_l.

This works out the same as the previous case

toptetar Pt = Bt (@)t b = ite( te(to T = g tolay iy

where O/ = 7/(—b). The vector b+ ' is orthogonal to the reflection line of 7’ and so
is ¢(a). ¢(c) is still parallel to the reflection line with |¢(c)| = |¢|. Therefore the
conjugacy class is the set of glide reflections with glide of the same distance.

3. Let ¢; and /5 be lines through the origin in R? that intersect at an angle of 7/n and let
r; be the reflection across ¢;. Prove that r; and r, generate a dihedral group D,,.

Suppose /; is at angle 6 from horizontal, and /5 is at angle 6+ /n. Let u be the reflection
across the z-axis. Then r; and ry can be expressed as

r1 = peu and Ty = Pagion/ml.

The conjugation of a rotation by a reflection is equal to the rotation in the opposite
direction, so upseu~! = p_sg. Note also that u = u~!. Therefore

ToT'1 = P204-27/nUP20U = P204-21 /nP—20 = P2r/n-

A reflection and a rotation by angle 27 /n generate the dihedral group D, so r; and rar
generate D,,. The group generated by r; and rory is also the group generated by r; and
T9 SiNce 19 = rory - 1.

4. Let S and S’ be subsets of R™. S is dense in S’ if for every point a € S” and every ¢ > 0,
there is s € § with |a — s| < e.

(a) Prove that an additive subgroup G of R is either dense in R or else discrete.

Suppose that G is not discrete, so for any € > 0, there exist x,y € G with = # y
such that |x — y| < e. Since G is a subgroup, x — y and y — = are also in G, so
there is some element b € G with 0 < b < e. For any real number a € R, there is
an integer n such that nb < a < (n + 1)b by taking n = |a/b|. Then nb € G and
la — nb| < b < e. Therefore G is dense in R.



(b)

Prove that the additive subgroup of R generated by 1 and v/2 is dense in R.
Let this subgroup be G and suppose it is not dense. By part (a) it must be discrete.
We showed in class that a discrete subgroup of R is trivial or G = aZ for some
real number a > 0. Since G contains 1 and v/2, it is not trivial. Then 1 = na and
V2 = ma for some integers n and m, which means that a = 1/n and that v/2 = m/n.
This is a contradiction because v/2 is irrational. Therefore G must be dense.

Let H be a subgroup of SOs. Prove that either H is cyclic or dense in SOs.
SO, is the group of rotations of SO,. Let

G={0eR|pcH}

which is an additive subgroup of R. Therefore G is dense or discrete. If G is dense
then H is dense. If G is not dense, then G is trivial or GG is generated by some real
number a > 0. In this case H is also trivial or generated by p,, so it is cyclic.

5. Find the symmetry group of

(a)

an I-beam, which one can think of as the product set of the letter I and an interval.

The I-beam can be reflected across each of the three coordinate planes. These
generate a group of order 8 isomorphic to Cy x Cy x Cy with elements

£1 0 O
0 £1 0
0 0 =1

a baseball (or equivalently a tennis ball) accounting for the seam.

A baseball is covered by two pieces of leather stiched together. The rotational
symmetry of the ball is generated by a rotation by angle 7 that turns around each
leather piece, and another rotation by angle 7 that switches the two pieces. Since
these generators both have order 2, the rotational group is the Klein four group,
02 X CQ.

The baseball also has orientation-reversing symmetry, so the order of the full symme-

try group is 8. Since these symmetries also have order 2, the group is also isomorphic
to 02 X 02 X 02.



