
MATH 150A Winter 2020 - Problem Set 9 solutions

due March 13

1. Let m be an orientation-reversing isometry of R2. Prove algebraically that m2 is a trans-
lation.

An isometry of R2 can be decomposed into a translation ta and an orthogonal linear
transformation s, so m = tas. Since m is orientation-reversing, the linear transformation
s is a reflection across a line through the origin. Then

m2 = tastas.

We showed in class that for s a linear transformation, sta = ts(a)s. Therefore

m2 = tastas = tats(a)s
2 = ta+s(a)

since s2 = 1.

2. Find the conjugacy class of an isometry of R2 of each of the following types.

(a) Translation.

Let ta be a translation, and m = tbϕ be an arbitrary isometry of R2 where ϕ is an
orthogonal linear transformation. Then

mtam
−1 = tbϕtaϕ

−1t−1b .

The inverse of tb is t−b. As in Problem 1, We have ϕta = tϕ(a)ϕ so

tbϕtaϕ
−1t−1b = tbtϕ(a)ϕϕ

−1t−b = tbtϕ(a)t−b = tϕ(a).

Note that ϕ(a) can be any point in R2 with |ϕ(a)| = |a|, so the conjugacy class of
ta is

{tc | c ∈ R2 with |c| = |a|}.
(b) Rotation about a point.

Let taρθ be a rotation, and m = tbϕ be an arbitrary isometry of R2. Then

mtaρθm
−1 = tbϕtaρθϕ

−1t−1b .

Conjugating ta by ϕ gives tϕ(a). If ϕ is a rotation, then it commutes with ρθ, so
ϕρθϕ

−1 = ρθ. In this case we have

tbϕtaρθϕ
−1t−1b = tbtϕ(a)ρθt−b = tbtϕ(a)tb′ρθ = tb+ϕ(a)+b′ρθ

where b′ = ρθ(−b). If ϕ is a reflection, then ϕρθϕ
−1 = ρ−θ, the rotation in the

opposite direction. Then

tbϕtaρθϕ
−1t−1b = tbtϕ(a)ρ−θt−b = tbtϕ(a)tb′ρ−θ = tb+ϕ(a)+b′ρ−θ

where b′ = ρ−θ(−b). Assuming θ 6= 0, b + b′ can be any vector in R2 for the right
choice of b. Therefore the conjugacy class of ρθ is

{tcρθ | c ∈ R2} ∪ {tcρ−θ | c ∈ R2}.



(c) Reflection across a line.

Let tar be a reflection where r is a reflection across a line through the origin orthog-
onal to a, and m = tbϕ be an arbitrary isometry of R2. Then

mtarm
−1 = tbϕtarϕ

−1t−1b .

Conjugating r by ϕ gives another reflection r′ across a line through the origin, so

tbϕtarϕ
−1t−1b = tbtϕ(a)r

′t−b = tbtϕ(a)tb′r
′ = tb+ϕ(a)+b′r

′

where b′ = r′(−b). The vector b + b′ is orthogonal to the reflection line of r′ and so
is ϕ(a). Therefore the conjugacy class of tar is the set of all reflections.

(d) Glide reflection across a line.

Let tctar be a glide reflection where r is a reflection across a line through the origin
orthogonal to a, and c is parallel to the line. Let m = tbϕ be an arbitrary isometry
of R2. Then

mtarm
−1 = tbϕtbtarϕ

−1t−1b .

This works out the same as the previous case

tbϕtctarϕ
−1t−1b = tbtϕ(c)+ϕ(a)r

′t−b = tbtϕ(c)+ϕ(a)tb′r
′ = tb+ϕ(c)+ϕ(a)+b′r

′

where b′ = r′(−b). The vector b + b′ is orthogonal to the reflection line of r′ and so
is ϕ(a). ϕ(c) is still parallel to the reflection line with |ϕ(c)| = |c|. Therefore the
conjugacy class is the set of glide reflections with glide of the same distance.

3. Let `1 and `2 be lines through the origin in R2 that intersect at an angle of π/n and let
ri be the reflection across `i. Prove that r1 and r2 generate a dihedral group Dn.

Suppose `1 is at angle θ from horizontal, and `2 is at angle θ+π/n. Let u be the reflection
across the x-axis. Then r1 and r2 can be expressed as

r1 = ρ2θu and r2 = ρ2θ+2π/nu.

The conjugation of a rotation by a reflection is equal to the rotation in the opposite
direction, so uρ2θu

−1 = ρ−2θ. Note also that u = u−1. Therefore

r2r1 = ρ2θ+2π/nuρ2θu = ρ2θ+2π/nρ−2θ = ρ2π/n.

A reflection and a rotation by angle 2π/n generate the dihedral group Dn, so r1 and r2r1
generate Dn. The group generated by r1 and r2r1 is also the group generated by r1 and
r2 since r2 = r2r1 · r1.

4. Let S and S ′ be subsets of Rn. S is dense in S ′ if for every point a ∈ S ′ and every ε > 0,
there is s ∈ S with |a− s| < ε.

(a) Prove that an additive subgroup G of R is either dense in R or else discrete.

Suppose that G is not discrete, so for any ε > 0, there exist x, y ∈ G with x 6= y
such that |x − y| < ε. Since G is a subgroup, x − y and y − x are also in G, so
there is some element b ∈ G with 0 < b < ε. For any real number a ∈ R, there is
an integer n such that nb ≤ a < (n + 1)b by taking n = ba/bc. Then nb ∈ G and
|a− nb| < b < ε. Therefore G is dense in R.



(b) Prove that the additive subgroup of R generated by 1 and
√

2 is dense in R.

Let this subgroup be G and suppose it is not dense. By part (a) it must be discrete.
We showed in class that a discrete subgroup of R is trivial or G = aZ for some
real number a > 0. Since G contains 1 and

√
2, it is not trivial. Then 1 = na and√

2 = ma for some integers n and m, which means that a = 1/n and that
√

2 = m/n.
This is a contradiction because

√
2 is irrational. Therefore G must be dense.

(c) Let H be a subgroup of SO2. Prove that either H is cyclic or dense in SO2.

SO2 is the group of rotations of SO2. Let

G = {θ ∈ R | ρθ ∈ H}

which is an additive subgroup of R. Therefore G is dense or discrete. If G is dense
then H is dense. If G is not dense, then G is trivial or G is generated by some real
number a > 0. In this case H is also trivial or generated by ρa, so it is cyclic.

5. Find the symmetry group of

(a) an I-beam, which one can think of as the product set of the letter I and an interval.

The I-beam can be reflected across each of the three coordinate planes. These
generate a group of order 8 isomorphic to C2 × C2 × C2 with elements±1 0 0

0 ±1 0
0 0 ±1

 .
(b) a baseball (or equivalently a tennis ball) accounting for the seam.

A baseball is covered by two pieces of leather stiched together. The rotational
symmetry of the ball is generated by a rotation by angle π that turns around each
leather piece, and another rotation by angle π that switches the two pieces. Since
these generators both have order 2, the rotational group is the Klein four group,
C2 × C2.

The baseball also has orientation-reversing symmetry, so the order of the full symme-
try group is 8. Since these symmetries also have order 2, the group is also isomorphic
to C2 × C2 × C2.


